精英家教网 > 高中数学 > 题目详情
如图,在三棱锥S-ABC中,G1,G2分别是△SAB和△SAC的重心,则直线G1G2与BC的位置关系是(  )
分析:根据三角形的重心定理,可得SG1=
2
3
SM且SG2=
2
3
SN,因此△SMN中,由比例线段证出G1G2∥MN.在△ABC中利用中位线定理证出MN∥BC,可得直线G1G2与BC的位置关系是平行.
解答:解:∵△SAB中,G1为的重心,
∴点G1在△SAB中线SM上,且满足SG1=
2
3
SM
同理可得:△SAC中,点G2在中线SN上,且满足SG2=
2
3
SN
∴△SMN中,
SG1
SM
=
SG2
SN
,可得G1G2∥MN
∵MN是△ABC的中位线,∴MN∥BC
因此可得G1G2∥BC,即直线G1G2与BC的位置关系是平行
故选:B
点评:本题给出三棱锥两个侧面的重心的连线,判定它与底面相对棱的位置关系,着重考查了三角形重心的性质、比例线段的性质和三角形中位线定理等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥S-ABC中,SA⊥平面ABC,平面SAB⊥平面SBC.
(1)求证:AB⊥BC;
(2)若设二面角S-BC-A为45°,SA=BC,求二面角A-SC-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥S-ABC中,平面SBC⊥平面ABC,SB=SC=AB=2,BC=2
2
,∠BAC=90°,O为BC中点.
(Ⅰ)求点B到平面SAC的距离;
(Ⅱ)求二面角A-SC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•杭州模拟)如图,在三棱锥S-ABC中,SA=SC=AB=BC,则直线SB与AC所成角的大小是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•成都一模)如图,在三棱锥S-ABC中,SA丄平面ABC,SA=3,AC=2,AB丄BC,点P是SC的中点,则异面直线SA与PB所成角的正弦值为(  )

查看答案和解析>>

同步练习册答案