精英家教网 > 高中数学 > 题目详情
设f(x)=ex-1.当a>ln2-1且x>0时,证明:f(x)>x2-2ax.
考点:利用导数求闭区间上函数的最值
专题:导数的综合应用
分析:欲证f(x)>x2-2ax,即证ex-x2+2ax-1>0.构造函数u(x)=ex-x2+2ax-1,则u′(x)=ex-2x+2a.令h(x)=ex-2x+2a,则h′(x)=ex-2.由此利用导数性质能证明当a>ln 2-1且x>0时,f(x)>x2-2ax.
解答: 证明:欲证f(x)>x2-2ax,即ex-1>x2-2ax,
即证ex-x2+2ax-1>0.
可令u(x)=ex-x2+2ax-1,则u′(x)=ex-2x+2a.
令h(x)=ex-2x+2a,则h′(x)=ex-2.
当x∈(-∞,ln 2)时,h′(x)<0,
函数h(x)在(-∞,ln 2]上单调递减,
当x∈(ln 2,+∞)时,h′(x)>0,函数h(x)在[ln 2,+∞)上单调递增.
所以h(x)的最小值为h(ln 2)=eln2-2ln 2+2a=2-2ln 2+2a.
因为a>ln 2-1,
所以h(ln 2)>2-2ln 2+2(ln 2-1)=0,即h(ln 2)>0.
所以u′(x)=h(x)>0,即u(x)在R上为增函数.
故u(x)在(0,+∞)上为增函数.所以u(x)>u(0).
而u(0)=0,所以u(x)=ex-x2+2ax-1>0.
故当a>ln 2-1且x>0时,f(x)>x2-2ax.
点评:本题主要考查了利用函数的导数求出函数的单调性以及函数的极值问题,考查学生分析解决问题的能力,利用导数研究函数的单调性的能力,解题时要认真审题,注意导数性质的合理运用.是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2
3
x3-ax2-3x+1(a∈R)
(Ⅰ)若f(x)在区间(-1,1)上为减函数,求a的取值范围;
(Ⅱ)讨论y=f(x)在(-1,1)内的极值点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,设椭圆中心在原点,焦点在x轴上,A、B分别为椭圆的左、右顶点,F为椭圆的右焦点,已知椭圆的离心率e=
3
2
,且
AF
BF
=-1.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若存在斜率不为零的直线l与椭圆相交于C、D两点,且使得△ACD的重心在y轴右侧,求直线l在x轴上的截距m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-2|x|-3,x∈R
(1)判断f(x)的奇偶性;
(2)画出函数f(x)的图象;
(3)求f(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

一次数学模拟考试,共12道选择题,每题5分,共计60分,每道题有四个可供选择的答案,仅有一个是正确的.学生甲只能确定其中10道题的正确答案,其余2道题完全靠猜测回答.学生甲所在班级共有40人,此次考试选择题得分情况统计表如下:
得分(分)4045505560
百分率15%10%25%40%10%
现采用分层抽样的方法从此班抽取20人的试卷进行选择题质量分析.
(1)应抽取多少张选择题得60分的试卷?
(2)求学生甲得60分的概率;
(3)若学生甲选择题得60分,求他的试卷被抽到的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C所对的边分别是a,b,c.已知a=3,cosB=
2
3
,bsinA=3csinB,
(Ⅰ)求b的值;
(Ⅱ)求sin(2B-
π
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
(1)log2
7
48
+log212-
1
2
log242-1
(2)0.027 -
1
3
-(-
1
6
-2+2560.75+(
1
3
-1
0-3-1

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,PA为⊙0的切线,A为切点,PBC是过点O的割线,PA=10,PB=5.
(Ⅰ)求证:
AB
AC
=
PA
PC

(Ⅱ)求AC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

把“五进制”数1234(5)转化为“八进制”数
 

查看答案和解析>>

同步练习册答案