精英家教网 > 高中数学 > 题目详情
在△ABC中,内角A,B,C所对的边分别是a,b,c.已知a=3,cosB=
2
3
,bsinA=3csinB,
(Ⅰ)求b的值;
(Ⅱ)求sin(2B-
π
3
)的值.
考点:正弦定理,余弦定理
专题:解三角形
分析:(Ⅰ)根据 a=3、bsinA=3csinB,由正弦定理可得 ba=3cb,求得c的值,再利用余弦定理求出b的值.
(Ⅱ)利用二倍角公式求得sin2B和cos2B的值,再利用两角差的正弦公式求得sin(2B-
π
3
)的值.
解答: 解:(Ⅰ)在△ABC中,∵a=3、bsinA=3csinB,由正弦定理可得 ba=3cb,故有 a=3c,解得 c=1.
再根据cosB=
2
3
,利用余弦定理可得 b2=a2+c2-2ac•cosB=9+1-6×
2
3
=6,∴b=
6

(Ⅱ)由于sin2B=2sinBcosB=2
1-cos2B
•cosB=2×
5
3
×
2
3
=
4
5
9
,cos2B=2cos2B-1=2×
4
9
-1=-
1
9

∴sin(2B-
π
3
)=sin2Bcos
π
3
-cos2Bsin
π
3
=
4
5
9
×
1
2
-(-
1
9
)×
3
2
=
4
5
+
3
18
点评:本题主要考查正弦定理和余弦定理的应用,两角和差的正弦公式,二倍角公式的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知偶函数y=f(x)定义域是[-3,3],当x≥0时,f(x)=
x
-1.
(1)求函数y=f(x)的解析式;
(2)画出函数y=f(x)的图象,并利用图象写出函数y=f(x)的单调区间和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

求值:
(1)0.0081 
1
4
+(4 -
3
4
2+(
8
 -
4
3
-16-0.75
(2)lg5+lg2-(-
1
3
-2+(
2
-1)0+log28.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=log2
x+1
x-1

(1)求f(x)的定义域和值域;
(2)判断f(x)的奇偶性并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=ex-1.当a>ln2-1且x>0时,证明:f(x)>x2-2ax.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a为实数,函数f(x)=x2+|x-a|+1,x∈R
(1)若f(1)=2,求a值;
(2)讨论f(x)的奇偶性;
(3)求f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=-x2+2ax+1-a,
(Ⅰ)若函数f(x)在区间[0,1]上的最大值为2,求实数a的值;
(Ⅱ)若方程f(x)=0的根一个在区间(-1,0)内,另一个在区间(1,2)内,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在小于100的正整数中共有多少个数能被7整除?这些数的和是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示:直角梯形ABCD中,AB⊥AD,AD⊥DC,AB=2,BC=
3
,CD=1,E为AD中点,沿CE,BE把梯形折成四个面都是直角三角形的三棱锥,使点A,D重合,则这个三棱锥的体积等于
 

查看答案和解析>>

同步练习册答案