分析 (Ⅰ)利用正弦定理和二倍角公式进行解答即可;
(Ⅱ)利用余弦定理进行解答.
解答 (Ⅰ)解:在△ABC中,由正弦定理$\frac{a}{sinA}$=$\frac{b}{sinB}$=$\frac{c}{sinC}$,得$\frac{4}{sinA}$=$\frac{3}{sinC}$,
因为△ABC,所以$\frac{4}{sin2C}$=$\frac{3}{sinC}$,即$\frac{4}{2sinCcosC}$=$\frac{3}{sinC}$,
解得cosC=$\frac{2}{3}$;
(Ⅱ)解:在△ABC中,由余弦定理c2=a2+b2-2bccosC,
得9=16+b2-2b×$\frac{2}{3}$,
解得b=3或b=$\frac{7}{3}$.
因为a、b、c互不相等,
所以b=$\frac{7}{3}$.
点评 本题考查了余弦定理、余弦定理,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
| 性质 | 定义域 | 值域 | 单调性 | 奇偶性 | 零点 |
| f(x) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | R>Q>P | B. | Q>R>P | C. | P>R>Q | D. | P>Q>R |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 优秀 | 非优秀 | 合计 | |
| 甲 | 30 | 20 | 50 |
| 乙 | 20 | 30 | 50 |
| 合计 | 50 | 50 | 100 |
| D | 0.05 | 0.01 | 0.005 | 0.001 |
| k2 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [0,1) | B. | (0,1] | C. | $[\frac{1}{3},\frac{2}{3})$ | D. | $(\frac{1}{3},\frac{2}{3}]$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com