精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=|x+$\frac{1}{x}$|-|x-$\frac{1}{x}$|;
(1)作出函数f(x)的图象;
(2)根据(1)所得图象,填写下面的表格:
 性质定义域 值域 单调性 奇偶性 零点 
 f(x)     
(3)关于x的方程f2(x)+m|f(x)|+n=0(m,n∈R)恰有6个不同的实数解,求n的取值范围.

分析 (1)利用分段函数求出f(x)的表达式,然后作出函数f(x)的图象,
(2)结合函数的图象判断相应的性质,
(3)根据图象利用换元法将条件进行转化,利用数形结合即可得到结论.

解答 解:函数f(x)=|x+$\frac{1}{x}$|-|x-$\frac{1}{x}$|=$\left\{\begin{array}{l}{\frac{2}{x},}&{x≥1}\\{2x,}&{0<x<1}\\{-2x,}&{-1≤x<0}\\{-\frac{2}{x},}&{x<-1}\end{array}\right.$,
作出函数f(x)的图象如图:
(2)由函数的图象得函数的定义域为{x|x≠0},
函数的值域为(0,2],
在(-∞,-1]和(0,1)上单调递增,
在[1,+∞)和(-1,0),单调递减,
函数关于y轴对称,是偶函数,
函数与x轴没有交点,无零点.
(3)∵0<f(x)≤2,且函数f(x)为偶函数,
∴令t=f(x),则方程等价为t2+mt+n=0,
则由图象可知,当0<t<2时,方程t=f(x)有4个不同的根,
当t=2时,方程t=f(x)有2个不同的根,
当t≤0或t>2时,方程t=f(x)有0个不同的根,
若方程f2(x)+m|f(x)|+n=0(m,n∈R)恰有6个不同的实数解,等价为方程f2(x)+mf(x)+n=0(m,n∈R)恰有6个不同的实数解,
即t2+mt+n=0有两个不同的根,
其中t1=2,0<t2<2,
则n=t1t2∈(0,4).

点评 本题主要考查函数零点的应用,利用条件求出函数f(x)的表达式,利用数形结合是解决本题的关键,综合性较强,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知集合A={x|0≤x≤2},B={x|-1<x≤1},则A∩B={x|0≤x≤1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在等差数列{an}中,已知a1+a2=2,a2+a3=10,求通项公式an及前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某农户计划建造一个室内面积为800m2的矩形蔬菜温室,在温室外,沿左、右两侧与后侧各保留1m宽的通道,沿前侧保留3m的空地(如图所示),当矩形温室的长和宽分别为多少时,总占地面积最大?并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.“a>1”是“f(x)=(a-1)•ax在定义域内为增函数”的(  )条件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在一次数学测验后,班级学委对选答题的选题情况进行了统计,如下表:(单位:人)
几何证明选讲坐标系与参数方程不等式选讲合计
男同学124622
女同学081220
合计12121842
在原统计结果中,如果不考虑性别因素,按分层抽样的方法从选做不同选做题的同学中随机选出7名同学进行座谈.已知两名数学科代表都在选做《不等式选讲》的同学中.
(Ⅰ)求在选做“坐标系与参数方程”的同学中,至少有一名女生参加座谈的概率;
(Ⅱ)记抽到数学科代表的人数为X,求X的分布列及数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若点(2,$\sqrt{2}$)在幂函数f(x)=xa的图象上,则f($\frac{1}{4}$)=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数y=$\sqrt{lo{g}_{\frac{1}{2}}(5x-2)}$的定义域是(  )
A.[$\frac{3}{5}$,+∞)B.($\frac{2}{5}$,+∞)C.[$\frac{2}{5}$,$\frac{3}{5}$]D.($\frac{2}{5}$,$\frac{3}{5}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.△ABC的内角A,B,C的对边分别为a,b,c,且a,b,c互不相等,设a=4,c=3,A=2C.
(Ⅰ)求cosC的值;
(Ⅱ)求b的值.

查看答案和解析>>

同步练习册答案