分析 设出矩形的长为a与宽b,建立蔬菜面积关于矩形边长的函数关系式S=(a-4)(b-2)=ab-4b-2a+8=800-2(a+2b).利用基本不等式变形求解.
解答 解:设矩形温室的左侧边长为am,后侧边长为bm,则ab=800.
蔬菜的种植面积
S=(a-4)(b-2)
=ab-4b-2a+8
=808-2(a+2b).
所以S≤808-4$\sqrt{2ab}$=648(m2),当且仅当a=2b,即a=40(m),b=20(m)时,S最大值=648(m2).
答:当矩形温室的左侧边长为40m,后侧边长为20m时,蔬菜的种植面积最大,最大种植面积为648m2.
点评 本题考查函数的模型的选择与应用,基本不等式的应用,基本知识的考查.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 性质 | 定义域 | 值域 | 单调性 | 奇偶性 | 零点 |
| f(x) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com