精英家教网 > 高中数学 > 题目详情
如图,正方体ABCD-A1B1C1D1中,E为棱AB的中点,则直线C1E与平面ACC1A1所成角的正切值为   
【答案】分析:以A为坐标原点,AB,AD,AA1分别为x,y,z轴正方向,建立空间坐标系O-xyz,分别求出面ACC1A1的法向量和直线C1E的方向向量,代入向量夹角公式,可得C1E与平面ACC1A1所成角的正弦值,进而根据同角三角函数关系求出正切值.
解答:解:以A为坐标原点,AB,AD,AA1分别为x,y,z轴正方向,建立空间坐标系O-xyz
设正方体ABCD-A1B1C1D1的棱长为2
则A(0,0,0),B(2,0,0),D(0,2,0),E(1,0,0),C1(2,2,2)
根据正方体的几何特征,可得BD⊥平面ACC1A1
=(-2,2,0)是平面ACC1A1的一个法向量
又∵=(-1,-2,-2)
故C1E与平面ACC1A1所成角θ满足sinθ===
则cosθ=,tanθ=
故答案为:
点评:本题考查的知识点是直线与平面所成的角,其中建立空间坐标系,将线面夹角问题转化为向量夹角问题是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1的棱长为a,它的各个顶点都在球O的球面上,问球O的表面积.
(1) 如果球O和这个正方体的六个面都相切,则有S=
 

(2)如果球O和这个正方体的各条棱都相切,则有S=
 

精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1中,E,F分别为BB1和A1D1的中点.证明:向量
A1B
B1C
EF
是共面向量.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1棱长为8,E、F分别为AD1,CD1中点,G、H分别为棱DA,DC上动点,且EH⊥FG.
(1)求GH长的取值范围;
(2)当GH取得最小值时,求证:EH与FG共面;并求出此时EH与FG的交点P到直线B1B的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1中,若E、F、G分别为棱BC、C1C、B1C1的中点,O1、O2分别为四边形ADD1A1、A1B1C1D1的中心,则下列各组中的四个点不在同一个平面上的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,正方体ABCD-A1B1C1D1中,E、F、G、H分别是所在棱的三等分点,且BF=DE=C1G=C1H=
13
AB

(1)证明:直线EH与FG共面;
(2)若正方体的棱长为3,求几何体GHC1-EFC的体积.

查看答案和解析>>

同步练习册答案