精英家教网 > 高中数学 > 题目详情
2.解不等式:|x-2|-|2x+5|>2x.

分析 先分三种情况:当x<-$\frac{5}{2}$时;然后解不等式,当-$\frac{5}{2}$≤x<2时;当x≥2时,进行绝对值的化简,然后解不等式.

解答 解:当x<-$\frac{5}{2}$时,-x+2+2x+5>2x,
解得:x<7,
此时不等式的解为:x<-$\frac{5}{2}$;
当-$\frac{5}{2}$≤x<2时,x-2+2x+5>2x,
解得:x>-3,
则不等式的解集为:-$\frac{5}{2}$≤x<2;
当x≥2时,x-2-2x-5>2x,
此时无解.
故不等式的解集为:{x|x<-2}.

点评 本题考查了解简单不等式的能力,解不等式要依据不等式的基本性质:
(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;
(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;
(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.在比赛中,如果运动员甲胜运动员乙的概率为$\frac{2}{3}$,那么在五次比赛中,运动员甲恰有三次获胜的概率为$\frac{80}{243}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.定义在R上的奇函数f(x),当x≥0时,f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{3}}(x+1),x∈[0,2)}\\{1-|x-4|,x∈[2,+∞)}\end{array}\right.$,则关于x的函数F(x)=f(x)-a(0<a<1)的所有零点之和为(  )
A.3a-1B.1-3aC.3-a-1D.1-3-a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知x<-2,求函数y=2x+$\frac{1}{x+2}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设x=$\frac{\sqrt{5}-1}{2}$,求x4+x2+2x-1的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=|x+$\frac{1}{2}$|+|x-$\frac{3}{2}$|.
(1)求不等式f(x)≤3的解集;
(2)若关于x的不等式f(x)<$\frac{1}{2}$|1-a|的解集是空集,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.解方程:x4(1+lgx)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.计算:$\sum_{r=1}^{r=n}$$\frac{r+2}{r!+(r+1)!+(r+2)!}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某研究机构抽取五名高三学生甲、乙、丙、丁、戊,对他们的记忆力x和判断力y进行统计分析,得到的结果如表所示,根据表中的数据回答下列问题:
编号
x68101214
y23456
(1)从这五名学生中任选两名,求选出的两名学生的记忆力均超过8的概率;
(2)求记忆力x和判断力y的回归直线方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,并据此推测记忆力为20的学生的判断力大约是多少?
(参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$)

查看答案和解析>>

同步练习册答案