精英家教网 > 高中数学 > 题目详情
如图,某市新体育公园的中心广场平面图如图所示,在y轴左侧的观光道曲线段是函数时的图象且最高点B(-1,4),在y轴右侧的曲线段是以CO为直径的半圆弧.⑴试确定A,的值;⑵现要在右侧的半圆中修建一条步行道CDO(单位:米),在点C与半圆弧上的一点D之间设计为直线段(造价为2万元/米),从D到点O之间设计为沿半圆弧的弧形(造价为1万元/米).设(弧度),试用来表示修建步行道的造价预算,并求造价预算的最大值?(注:只考虑步行道的长度,不考虑步行道的宽度)
(1),;(2)造价预算,造价预算最大值为()万元.

试题分析:(1)此小题实质是考查利用三角函数图像求三角解析式问题,由最高点B的坐标可求得A的值,又四分之一周期为3,易求得,在此情况下,把B点坐标代入三角解析式中可求得;(2)本小题中步行道分两部分组成,(如图)一部分在扇形中利用弧长公式:求得,另一部分在中利用直角三角形的边角关系求得,两项相加可得关于的造价预算函数,再用导数工具求得其最值.
试题解析:⑴因为最高点B(-1,4),所以A=4;又,所以,因为,代入点B(-1,4),,又;⑵由⑴可知:,得点C,取CO中点F,连结DF,因为弧CD为半圆弧,所以,即 ,则圆弧段造价预算为万元,中,,则直线段CD造价预算为万元,所以步行道造价预算.由得当时,,当时,,即上单调递增;当时,,即上单调递减,所以时取极大值,也即造价预算最大值为()万元.
(图
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设平面向量
m
=(cos2
x
2
3
sinx),
n
=(2,1),函数f(x)=
m
n

(Ⅰ)当x∈[-
π
3
π
2
]时,求函数f(x)的取值范围;
(Ⅱ)当f(α)=
13
5
,且-
3
<α<
π
6
时,求sin(2α+
π
3
)的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,已知是半径为1,圆心角为的扇形,是扇形弧上的动点,交于点交于点.记.
(1).若,如图3,当角取何值时,能使矩形的面积最大;
(2).若,如图4,当角取何值时,能使平行四边形的面积最大.并求出最大面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在△ABC中,如果sinA=cosB,那么这个三角形是(  )
A.直角三角形
B.锐角三角形
C.钝角三角形
D.直角三角形或钝角三角形

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若不等式a>2sinxcosx+
3
cos2x
恒成立,则实数a的取值范围为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知集合M={a,b,c}中的三个元素可构成某一三角形的三边长,那么此三角形一定不是(  )
A.直角三角形B.锐角三角形C.等腰三角形D.钝角三角形

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在△ABC中,已知,则△ABC的形状为          .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

中,角所对的边分别为。已知.
(1)若,求的面积;   (2)求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

f(x)=sin 3x+cos 3x,若对任意实数x都有|f(x)|≤a,则实数a的取值范围是________.

查看答案和解析>>

同步练习册答案