精英家教网 > 高中数学 > 题目详情
10.椭圆Γ:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左、右焦点分别为F1,F2,右顶点为A,上顶点为B.已知$|AB|=\frac{{\sqrt{7}}}{2}|{F_1}{F_2}|$
(Ⅰ)求椭圆的离心率;
(Ⅱ)过点M(-2a,0)的直线交椭圆Γ于P、Q(不同于左、右顶点)两点,且$\frac{1}{{|P{F_1}|}}+\frac{1}{{|Q{F_1}|}}=\frac{1}{12}$.当△PQF1面积最大时,求直线PQ的方程.

分析 (Ⅰ)设椭圆右焦点F2的坐标为(c,0),A(a,0),B(0,b),运用两点的距离公式和a,b,c的关系和离心率公式,计算即可得到所求值;
(II)由椭圆的离心率可得椭圆方程为3x2+4y2=3a2.设直线PQ的方程为x=my-2a,代入椭圆方程,可得y的二次方程,运用韦达定理和弦长公式,求得△PQF1面积,运用椭圆的焦半径公式,结合基本不等式可得最大值,以及直线PQ的方程.

解答 解:(Ⅰ)设椭圆右焦点F2的坐标为(c,0),A(a,0),B(0,b),
由$|AB|=\frac{{\sqrt{7}}}{2}|{F_1}{F_2}|$,可得a2+b2=7c2
又b2=a2-c2,则$\frac{c^2}{a^2}=\frac{1}{4}$,
所以椭圆的离心率$e=\frac{1}{2}$;
(II)椭圆的离心率是$\frac{1}{2}$,可得c2=$\frac{1}{4}$a2,即${b^2}=\frac{3}{4}{a^2}$,
则椭圆方程可写为3x2+4y2=3a2
设直线PQ的方程为x=my-2a,
联立直线和椭圆方程,消去x得(3m2+4)y2-12may+9a2=0.
因而${y_1}+{y_2}=\frac{12ma}{{3{m^2}+4}}$,${y_1}{y_2}=\frac{{9{a^2}}}{{3{m^2}+4}}$.
依题意,该方程的判别式△>0,即m2-4>0,
设P(x1,y1)、Q(x2,y2),
由焦半径公式$|P{F_1}|=\frac{{|m{y_1}|}}{2}\;,\;\;|Q{F_1}|=\frac{{|m{y_2}|}}{2}$.
因此$\frac{1}{{|P{F_1}|}}+\frac{1}{{|Q{F_1}|}}=\frac{1}{12}$可化为$|\frac{1}{y_1}+\frac{1}{y_2}|=\frac{|m|}{24}$.①
将${y_1}+{y_2}=\frac{12ma}{{3{m^2}+4}}$,${y_1}{y_2}=\frac{{9{a^2}}}{{3{m^2}+4}}$代入①式得,$\frac{|12ma|}{{9{a^2}}}=\frac{|m|}{24}$,解得a=32.
所以${S_{△PQ{F_1}}}=\frac{1}{2}\;•\;\frac{3a}{2}|{y_1}-{y_2}|=\frac{{9{a^2}}}{2}\;•\;\frac{{\sqrt{{m^2}-4}}}{{3{m^2}+4}}$.②
令$t=\sqrt{{m^2}-4}$(t>0),
则②式可化为${S_{△PQ{F_1}}}=\frac{{9{a^2}}}{2}\;•\;\frac{t}{{3{t^2}+16}}\;≤\;\frac{{9{a^2}}}{2}\;•\;\frac{t}{{2×4×\sqrt{3}t}}=192\sqrt{3}$.
当且仅当${t^2}=\frac{16}{3}$时,“=”成立,此时$m=±\frac{{2\sqrt{21}}}{3}$.
所以直线PQ的方程为$x=\frac{{2\sqrt{21}}}{3}y-64$或$x=-\frac{{2\sqrt{21}}}{3}y-64$.

点评 本题考查椭圆的离心率的求法,注意运用两点的距离公式和基本量的关系,考查直线的方程的求法,注意运用联立直线方程和椭圆方程,运用韦达定理和弦长公式,以及焦半径公式和基本不等式的运用,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=|x+$\frac{2}{a}}$|+|x-a|(a≠0).
(1)证明:f(x)≥2$\sqrt{2}$;
(2)如果a>0且f(3)<6,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,a,b,c分别为内角A,B,C的对边,且b2+c2-a2=bc.
(Ⅰ)求角A的大小;
(Ⅱ)已知a=2,设函数f(x)=$\sqrt{3}$sin$\frac{x}{2}$cos$\frac{x}{2}$+cos2$\frac{x}{2}$,当x=B时,f(x)取最大值,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.正△ABC中,$\overrightarrow{AB}$在$\overrightarrow{BC}$方向上的投影为-1,且$\overrightarrow{AD}=2\overrightarrow{DC}$,则$\overrightarrow{BD}•\overrightarrow{AC}$=$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知复数z1=1+i,z2=2-i,则$\frac{{z}_{1}{z}_{2}}{i}$=1-3i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,P(-2,1)是C1上一点.
(1)求椭圆C1的方程;
(2)设A,B,Q是P分别关于两坐标轴及坐标原点的对称点,平行于AB的直线l交C1于异于P、Q的两点C,D,点C关于原点的对称点为E.证明:直线PD、PE与y轴围成的三角形是等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在△ABC中,已知a=5,b=8,并且△ABC的面积为10,则角C的大小为$\frac{π}{6}$或$\frac{5π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知椭圆E的中心为原点,F(3,0)是E的焦点,过F的直线l与E相交于A,B两点,且AB中点为(2,-1),则E的离心率e=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知f(α)=$\frac{{sin(π-α)cos(α-\frac{π}{2})cos(π+α)}}{{sin(\frac{π}{2}+α)cos(\frac{π}{2}+α)tan(3π+α)}}$
(1)化简f(a).
(2)若α是第三象限角,且sin(π+α)=$\frac{1}{3}$,求f(α)的值.

查看答案和解析>>

同步练习册答案