精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
已知椭圆的左、右焦点分别为,离心率.
(I)求椭圆的标准方程;
(II)过点的直线与该椭圆交于两点,且,求直线的方程.
(I)(II)

试题分析:(I)由已知得,解得 ∴
∴ 所求椭圆的方程为 .     
(II)由(I)得
①若直线的斜率不存在,则直线的方程为,由
,∴ ,这与已知相矛盾。
②若直线的斜率存在,设直线直线的斜率为,则直线的方程为
,联立,消元得
∴ ,∴ 
又∵∴ 
∴ 
化简得解得
∴       ∴ 所求直线的方程为.
点评:本题第二问中求直线方程要注意分斜率存在与不存在两种情况讨论
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分) 已知直线L:y=x+1与曲线C:交于不同的两点A,B;O为坐标原点。
(1)若,试探究在曲线C上仅存在几个点到直线L的距离恰为?并说明理由;
(2)若,且a>b,,试求曲线C的离心率e的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线的两焦点为,过轴的垂线交双曲线于两点,若内切圆的半径为,则此双曲线的离心率为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)过点作直线与抛物线相交于两点,圆

(1)若抛物线在点处的切线恰好与圆相切,求直线的方程;
(2)过点分别作圆的切线试求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线的焦点为F1.F2,点M在双曲线上且,则点M到x轴的距离为   (   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
已知中心在原点O,焦点在x轴上的椭圆E过点(1,),离心率为
(Ⅰ)求椭圆E的方程;
(Ⅱ)直线xy+1=0与椭圆E相交于A、B(BA上方)两点,问是否存在直线l,使l与椭圆相交于C、D(CD上方)两点且ABCD为平行四边形,若存在,求直线l的方程与平行四边形ABCD的面积;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线C关于轴对称,它的顶点在坐标原点,并且经过点
(1)求抛物线C的标准方程
(2)直线过抛物线的焦点F,与抛物线交于A、B两点,线段AB的中点M的横坐标为3,求弦长以及直线的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

动圆经过定点,且与直线相切。
(1)求圆心的轨迹方程;
(2)直线过定点与曲线交于两点:
①若,求直线的方程;
②若点始终在以为直径的圆内,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线的一条渐近线的倾斜角为,离心率为,则的最小值为( )
A.B.C.D.

查看答案和解析>>

同步练习册答案