精英家教网 > 高中数学 > 题目详情
已知抛物线C关于轴对称,它的顶点在坐标原点,并且经过点
(1)求抛物线C的标准方程
(2)直线过抛物线的焦点F,与抛物线交于A、B两点,线段AB的中点M的横坐标为3,求弦长以及直线的方程。
(1);(2)直线方程为:.

试题分析:(1)依题意设抛物线方程为:
抛物线方程为                                                           ……4分
(2)  
当直线斜率不存在时即方程为:此时AB中点为F(1,0)不合题意,舍去          ……6分
令直线方程为:代入抛物线方程得:
得:                                                   ……9分
,
直线方程为:                                          ……13分
点评:对于弦长问题,只需联立方程利用韦达定理及弦长公式求解即可。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(12分)如图所示,椭圆C 的离心率,左焦点为右焦点为,短轴两个端点为.与轴不垂直的直线与椭圆C交于不同的两点,记直线的斜率分别为,且

(1)求椭圆 的方程;
(2)求证直线 与轴相交于定点,并求出定点坐标.
(3)当弦 的中点落在内(包括边界)时,求直线的斜率的取值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆方程为,左、右焦点分别是,若椭圆上的点的距离和等于
(Ⅰ)写出椭圆的方程和焦点坐标;
(Ⅱ)设点是椭圆的动点,求线段中点的轨迹方程;
(Ⅲ)直线过定点,且与椭圆交于不同的两点,若为锐角(为坐标原点),求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在椭圆中,分别是其左右焦点,若,则该椭圆离心率的取值范围是 (     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知椭圆的左、右焦点分别为,离心率.
(I)求椭圆的标准方程;
(II)过点的直线与该椭圆交于两点,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题12分)直线l:y=kx+1与双曲线C:的右支交于不同的两点A,B
(Ⅰ)求实数k的取值范围;
(Ⅱ)是否存在实数k,使得以线段AB为直径的圆经过双曲线C的右焦点F?若存在,求出k的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知抛物线到抛物线的准线距离为d1,到直线的距离为d2,则d1+d2的最小值是          

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知直线与抛物线相交于两点,为抛物线的焦点,若,则的值为         

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点为抛物线上一点,记点轴距离,点到直线的距离,则的最小值为____________.

查看答案和解析>>

同步练习册答案