| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 连结EG,通过证明AB⊥平面EFG得出CD⊥平面EFG,在直角三角形AEG中求出AG,EF,求出三角形ACE的面积,根据AG判断出F的位置,利用全都三角形判断∠EAD.
解答
解:连结EG,
(1)∵EF⊥平面ABCD,AB?平面ABCD,
∴EF⊥AB,
∵FG∥BC,BC⊥AB,
∴AB⊥FG,
又EF?平面EFG,FG?平面EFG,EF∩FG=F,
∴AB⊥平面EFG,∵AB∥CD,
∴CD⊥平面EFG.故(1)正确.
(2)∵AB⊥平面EFG,
∴AB⊥EG,∵∠EAB=60°,AE=2,
∴AG=$\frac{1}{2}$AE=1,故(2)正确.
(3))∵AG=1=$\frac{1}{2}AB$,∴F为AC的中点.
∵AE=2,AC=$\sqrt{2}AB$=2$\sqrt{2}$,AF=$\frac{1}{2}AC$=$\sqrt{2}$,
∴EF=$\sqrt{A{E}^{2}-A{F}^{2}}$=$\sqrt{2}$.
∴S△ACE=$\frac{1}{2}AC•EF$=$\frac{1}{2}×2\sqrt{2}×\sqrt{2}$=2,
∴以AC,AE作为邻边的平行四边形面积为2S△ACE=4,故(3)错误;
(4)过F作FM⊥AD于M,则AM=1,
由(1)的证明可知AD⊥平面EFM,故而AD⊥EM,
∴Rt△EAG≌Rt△EAM,
∴∠EAM=∠EAG=60°,故(4)正确.
故选:C
点评 本题考查了线面垂直的判定与性质,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | C${\;}_{8}^{4}$ | B. | -C${\;}_{8}^{4}$ | C. | C${\;}_{9}^{5}$ | D. | -C${\;}_{9}^{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 22 | B. | 34 | C. | 32 | D. | 40 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3-$\sqrt{2}$ | B. | 3+2$\sqrt{2}$ | C. | 3+$\sqrt{2}$ | D. | 4$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f′(x0)=0 | B. | f′(x0)<0 | ||
| C. | f′(x0)=0且f″(x0)<0 | D. | f′(x0)或f′(x0)不存在 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com