精英家教网 > 高中数学 > 题目详情
20.设函数f(x)=|x+2|-|x-2|.
(1)解不等式f(x)≥2;
(2)当x∈R,0<y<1时,证明:|x+2|-|x-2|≤$\frac{1}{y}$+$\frac{1}{1-y}$.

分析 (Ⅰ)运用绝对值的定义,去掉绝对值,得到分段函数,再由各段求范围,最后求并集即可;
(II)由分段函数可得f(x)的最大值,再由基本不等式求得$\frac{1}{y}$+$\frac{1}{1-y}$的最小值,即可得证.

解答 解:(Ⅰ)由已知可得:$f(x)=\left\{{\begin{array}{l}{4,x≥2}\\{2x,-2<x<2\;}\\{-4,\;\;\;x≤-2}\end{array}}\right.$,
由x≥2时,4>2成立;-2<x<2时,2x≥2,即有x≥1,则为1≤x<2.
故f(x)≥2的解集为{x|x≥1}.-----(5分)
(II)由(Ⅰ)知,∴$|{x+2}|-|{x-2}|≤\frac{1}{y}+\frac{1}{1-y}$;
∴$\frac{1}{y}$+$\frac{1}{1-y}$=($\frac{1}{y}$+$\frac{1}{1-y}$)[y+(1-y)]=2+$\frac{1-y}{y}$+$\frac{y}{1-y}$≥4,
∴$|{x+2}|-|{x-2}|≤\frac{1}{y}+\frac{1}{1-y}$.…(10分)

点评 本题考查绝对值不等式的解法,考查不等式恒成立,注意转化为函数的最值,考查基本不等式的运用:求最值,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.假设关于某设备的使用年限x和所支出的维修费用y(万元)有如下的统计资料:
使用年限x23456
维修费用y2.23.85.56.57.0
若由资料知,y与x呈线性相关关系,
(1)试求线性回归方程$\left.\begin{array}{l}{∧}\\{y}\end{array}\right.$=$\left.\begin{array}{l}{∧}\\{b}\end{array}\right.$x+$\left.\begin{array}{l}{∧}\\{a}\end{array}\right.$;
(2)估计使用年限为10年时,维修费用是多少?
注:$\left.\begin{array}{l}{∧}\\{b}\end{array}\right.$=$\frac{\sum_{i-1}^{i-n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i-1}^{i-n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\left.\begin{array}{l}{∧}\\{a}\end{array}\right.$=$\overline{y}$-$\left.\begin{array}{l}{∧}\\{b}\end{array}\right.$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知数列{an}为等差数列,若a2+a3+a4=π,则cos(a1+a5)的值为(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知数列{an}中,${a_n}=\frac{1}{{(\sqrt{n-1}+\sqrt{n})(\sqrt{n-1}+\sqrt{n+1})(\sqrt{n}+\sqrt{n+1}}}$,则S4=$\frac{3-\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在5道题中有3道理科题和2道文科题,如果一次性抽取2道题,已知有一道是理科题的条件下,则另一道也是理科题的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{4}$C.$\frac{1}{2}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知两组相关数据如表,其线性回归方程为$\stackrel{∧}{y}$=x+$\frac{6}{5}$,表中缺失的数据m以及当x=15时$\stackrel{∧}{y}$的值n,则m+n=$\frac{136}{5}$.
 x 5 7 9 11 13
 y 6 8 m 12 14

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知长方体ABCD-A1B1C1D1中,底面ABCD为正方形,DD1⊥平面ABCD,AB=4,AA1=2,点E1在棱C1D1上,且D1E1=3.
(Ⅰ)在棱CD上确定一点E,使得直线EE1∥平面D1DB,并写出证明过程;
(Ⅱ)若动点F在正方形ABCD内,且AF=2,请说明点F的轨迹,探求E1F长度的最小值并求此时直线E1F与平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=xlnx-ax2+(2a-1)x,a∈R.
(1)令g(x)为f(x)的导函数,求g(x)单调区间;
(2)已知函数f(x)在x=1处取得极大值,求实数a取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数y=2sinx(x∈[$\frac{π}{6}$,$\frac{2π}{3}$])的值域是(  )
A.[$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$]B.[1,$\sqrt{3}$]C.[1,2]D.[$\frac{1}{2}$,1]

查看答案和解析>>

同步练习册答案