分析 (Ⅰ)运用绝对值的定义,去掉绝对值,得到分段函数,再由各段求范围,最后求并集即可;
(II)由分段函数可得f(x)的最大值,再由基本不等式求得$\frac{1}{y}$+$\frac{1}{1-y}$的最小值,即可得证.
解答 解:(Ⅰ)由已知可得:$f(x)=\left\{{\begin{array}{l}{4,x≥2}\\{2x,-2<x<2\;}\\{-4,\;\;\;x≤-2}\end{array}}\right.$,
由x≥2时,4>2成立;-2<x<2时,2x≥2,即有x≥1,则为1≤x<2.
故f(x)≥2的解集为{x|x≥1}.-----(5分)
(II)由(Ⅰ)知,∴$|{x+2}|-|{x-2}|≤\frac{1}{y}+\frac{1}{1-y}$;
∴$\frac{1}{y}$+$\frac{1}{1-y}$=($\frac{1}{y}$+$\frac{1}{1-y}$)[y+(1-y)]=2+$\frac{1-y}{y}$+$\frac{y}{1-y}$≥4,
∴$|{x+2}|-|{x-2}|≤\frac{1}{y}+\frac{1}{1-y}$.…(10分)
点评 本题考查绝对值不等式的解法,考查不等式恒成立,注意转化为函数的最值,考查基本不等式的运用:求最值,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
| 使用年限x | 2 | 3 | 4 | 5 | 6 |
| 维修费用y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $-\frac{1}{2}$ | C. | $-\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
| x | 5 | 7 | 9 | 11 | 13 |
| y | 6 | 8 | m | 12 | 14 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$] | B. | [1,$\sqrt{3}$] | C. | [1,2] | D. | [$\frac{1}{2}$,1] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com