精英家教网 > 高中数学 > 题目详情
5.已知两组相关数据如表,其线性回归方程为$\stackrel{∧}{y}$=x+$\frac{6}{5}$,表中缺失的数据m以及当x=15时$\stackrel{∧}{y}$的值n,则m+n=$\frac{136}{5}$.
 x 5 7 9 11 13
 y 6 8 m 12 14

分析 首先求得x的平均值,然后利用回归方程过样本中心点求得y的平均值,利用题中所给表格求解实数m的值,利用回归方程的预测作用求得n的值,最后计算m+n即可.

解答 解:由题意可得:$\overline{x}=\frac{5+7+9+11+13}{5}=9$,
回归方程过样本中心点,则:$\overline{y}=\overline{x}+\frac{6}{5}=9+\frac{6}{5}=\frac{51}{5}$,
即:$\overline{y}=\frac{6+8+m+12+14}{5}=\frac{51}{5}$,解得:m=11.
当x=15时:$n=15+\frac{6}{5}=\frac{81}{5}$,
据此可得:$m+n=11+\frac{81}{5}=\frac{136}{5}$.
故答案为:$\frac{136}{5}$.

点评 本题考查线性回归方程的性质及其应用,重点考查学生对基础概念的理解和计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知x,y满足|x|+|y|≤4,则z=(x+3)2+(y-3)2的最小值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知全集U=R,集合A={x|-2<x<2},B={x|(1+x)(3-x)≥0},则A∩B等于(  )
A.[-2,2)B.[-1,2)C.(-2,-1)D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=cosx(sinx+cosx)-$\frac{1}{2}$.
(1)若0<α<$\frac{π}{2}$,且sinα=$\frac{\sqrt{2}}{2}$,求f(α)的值;
(2)求函数f(x)的最小正周期及单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=|x+2|-|x-2|.
(1)解不等式f(x)≥2;
(2)当x∈R,0<y<1时,证明:|x+2|-|x-2|≤$\frac{1}{y}$+$\frac{1}{1-y}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=|x+a|-|x-1|.
(Ⅰ)当a=-2时,求不等式$f(x)≥\frac{1}{2}$的解集;
(Ⅱ)若f(x)≥2有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在ABC中,a,b,c分别为A,B,C所对应的边,若acosB+bcosA=$\frac{c}{2cosC}$.
(1)求C;
(2)若$\overrightarrow{m}$=($\sqrt{3}$sin2B-$\frac{3\sqrt{3}}{4}$,cosB),$\overrightarrow{n}$=(1,sinA),求$\overrightarrow{m}$•$\overrightarrow{n}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.从区间(0,2)上任取一个实数m,则直线x-$\sqrt{3}$y=0与圆(x-1)2+y2=m(m>0)相交的概率为(  )
A.$\frac{7}{8}$B.$\frac{3}{4}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设a为实数,函数f(x)=x2-ax.
(1)若函数f(x)在[2,4]上具有单调性,求实数a的取值范围;
(2)设h(a)为f(x)在[2,4]上的最小值,求h(a).

查看答案和解析>>

同步练习册答案