分析 (1)根据题意,利用sinα求出cosα的值,再计算f(α)的值;
(2)化简函数f(x),求出f(x)的最小正周期与单调增区间即可.
解答 解:(1)∵0<α<$\frac{π}{2}$,且sinα=$\frac{\sqrt{2}}{2}$
∴cosα=$\frac{\sqrt{2}}{2}$,
∴f(α)=cosα(sinα+cosα)-$\frac{1}{2}$
=$\frac{\sqrt{2}}{2}$×($\frac{\sqrt{2}}{2}$+$\frac{\sqrt{2}}{2}$)-$\frac{1}{2}$
=$\frac{1}{2}$;
(2)∵函数f(x)=cosx(sinx+cosx)-$\frac{1}{2}$
=sinxcosx+cos2x-$\frac{1}{2}$
=$\frac{1}{2}$sin2x+$\frac{1+cos2x}{2}$-$\frac{1}{2}$
=$\frac{1}{2}$(sin2x+cos2x)
=$\frac{\sqrt{2}}{2}$sin(2x+$\frac{π}{4}$),
∴f(x)的最小正周期为T=$\frac{2π}{2}$=π;
令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{4}$≤2kπ+$\frac{π}{2}$,k∈Z,
解得kπ-$\frac{3π}{8}$≤x≤kπ+$\frac{π}{8}$,k∈Z;
∴f(x)的单调增区间为[kπ-$\frac{3π}{8}$,kπ+$\frac{π}{8}$],k∈Z.
点评 本题考查了三角函数的化简以及图象与性质的应用问题,是基础题目.
科目:高中数学 来源: 题型:选择题
| 产量x(千件) | 2 | 3 | 5 | 6 |
| 成本y(万元) | 7 | 8 | 9 | 12 |
| A. | 14.5 | B. | 13.5 | C. | 12.5 | D. | 11.5 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0<a≤$\frac{1}{3}$ | B. | a≥3,或0<a<$\frac{1}{4}$ | C. | a≥3,或0<a≤$\frac{1}{3}$ | D. | a≥3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
| x | 5 | 7 | 9 | 11 | 13 |
| y | 6 | 8 | m | 12 | 14 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com