精英家教网 > 高中数学 > 题目详情
4.计算下列各式的值
(1)$\root{4}{{{{(3-π)}^4}}}$+(0.008)${\;}^{-\frac{1}{3}}}$-(0.25)${\;}^{\frac{1}{2}}}$×(${\frac{1}{{\sqrt{2}}}}$)-4
(2)log3$\sqrt{27}$-log3$\sqrt{3}$-lg625-lg4+ln(e2)-$\frac{4}{3}$lg$\sqrt{8}$.

分析 (1)根据指数幂的运算性质计算即可,
(2)根据对数的运算性质计算即可.

解答 解:(1)原式=π-3+$0.{2}^{3×(-\frac{1}{3})}$-$0.{5}^{2×\frac{1}{2}}$×${2}^{-\frac{1}{2}×(-4)}$=π-3+5-0.5×4=π,
(2)原式=log33-lg2500+2-lg4=1+2-lg10000=3-4=-1.

点评 本题考查了对数的运算性质和指数幂的运算性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.已知曲线C1的极坐标方程为ρ2=$\frac{3}{1+2co{s}^{2}θ}$,直线l的极坐标方程为ρ=$\frac{4}{sinθ+cosθ}$.
(Ⅰ)写出曲线C1与直线l的直角坐标方程;
(Ⅱ)设Q为曲线C1上一动点,求Q点到直线l距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知正方体ABCD-A1B1C1D1的棱长为1,则点C1到直线BD的距离为$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知映射f:(x,y)→(x-2y,2x+x),则(2,4)→(-6,6),(1,3)→(-5,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=x2+ax+b(a,b∈R),
(1)若函数f(x)在区间[-1,1]上不单调,求实数a的取值范围;
(2)记M(a,b)是|f(x)|在区间[-1,1]上的最大值,证明:当|a|≥2时,M(a,b)≥2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)=$\frac{1}{x}$+lg(1-2x)定义域为{x|x<$\frac{1}{2}$且x≠0}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知p:x2+x-2>0,q:x>a,若q是p的充分不必要条件,则a的取值范围是(  )
A.(-∞,-2)B.(-2,+∞)C.(-2,1]D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某班的75名同学已编号1,2,3,…,75,为了解该班同学的作业情况,老师收取了学号能被5整除的15名同学的作业本,这里运用的抽样方法是(  )
A.简单随机抽样法B.系统抽样法C.分层抽样法D.抽签法

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在三棱锥P-ABC中,PA⊥平面ABC,AB⊥BC,DE垂直平分线段PC,且分别交AC、PC于D、E两点,PB=BC,PA=AB=1.
(1)求证:PC⊥平面BDE;
(2)求三棱锥E-BCD的外接球的表面积.

查看答案和解析>>

同步练习册答案