如图,已知⊙
与⊙
外切于点
,
是两圆的外公切线,
,
为切点,
与
的延长线相交于点
,延长
交⊙
于 点
,点
在
延长线上.
(1)求证:
是直角三角形;
(2)若
,试判断
与
能否一定垂直?并说明理由.
(3)在(2)的条件下,若
,
,求
的值.
![]()
![]()
(1)证明略;(2)
;(3)![]()
【解析】
试题分析:(1)从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线,平分两条切线的夹角;(2)判断三角形相似:一是平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角形相似;二是如果一个三角形的两个角与另一个三角形的两个角对应相等, 那么这两个三角形相似;三是如果两个三角形的两组对应边的比相等,并且相应的夹角相等, 那么这两个三角形相似;四是如果两个三角形的三组对应边的比相等,那么这两个三角形相似;五是对应角相等,对应边成比例的两个三角形叫做相似三角;(3)切割线定理:切割线定理,是圆幂定理的一种,从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.
试题解析:解:(1)证明:过点
作两圆公切线
交
于
,由切线长定理得
,∴
为直角三角形 3分
(2)![]()
证明:∵
,
∴
,又
,
∴
∽![]()
∴
即
. 6分
(3)由切割线定理,
,
∴![]()
![]()
∴
. 9分
考点:(1)切线长定理;(2)相似三角形的应用;(3)切割线定理的应用.
科目:高中数学 来源: 题型:
有关部门从甲、乙两个城市所有的自动售货机中随机抽取了16台,记录了上午8∶00~11∶00之间各自的销售情况(单位:元)
甲:18,8,10,43,5,30,10,22,6,27,25,58,14,18,30,41;
乙:22,31,32,42,20,27,48,23,38,43,12,34,18,10,34,23.
试用两种不同的方式分别表示上面的数据,并简要说明各自的优点.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知函数
表示过原点的曲线,且在
处的切线的倾斜角均为
,有以下命题:
①
的解析式为
;
②
的极值点有且只有一个;
③
的最大值与最小值之和等于零;
其中正确命题的序号为_ .
查看答案和解析>>
科目:高中数学 来源: 题型:
已知100件产品中有5件次品,从这100件产品任意取出3件,设A表示事件“3件产品全不是次品”,B表示事件“3件产品全是次品”,C表示事件“3件产品中至少有1件次品”,则下列结论正确的是( )
A.B与C互斥
B.A与C互斥
C.A、B、C任意两个事件均互斥
D.A、B、C任意两个事件均不互斥
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com