·ÖÎö £¨¢ñ£©ÀûÓÃËıßÐÎA1B1A2B2µÄÃæ»ýΪ$4\sqrt{3}$£¬ÍƳö$ab=2\sqrt{3}$£¬ÀûÓÃËıßÐÎA1B1A2B2ÄÚÇÐÔ²·½³Ì£¬Ô²ÐÄ£¨0£¬0£©µ½Ö±ÏßA2B2µÄ¾àÀëΪ$\frac{{2\sqrt{3}}}{{\sqrt{7}}}$£¬Çó³öa£¬b£¬È»ºóÇó½âÍÖÔ²·½³Ì£®
£¨¢ò£©ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬ÁªÁ¢$\left\{{\begin{array}{l}{y=kx+m}\\{\frac{x^2}{4}+\frac{y^2}{3}=1}\end{array}}\right.$£¬ÀûÓÃÅбðʽÒÔ¼°Î¤´ï¶¨Àí£¬Í¨¹ý$\overrightarrow{{A_2}M}•\overrightarrow{{A_2}N}=0$£¬Çó³ökm¹ØÏµÊ½£¬È»ºóÇó½âÖ±Ïß·½³ÌΪ$y=k£¨x-\frac{2}{7}£©$£¬µÃµ½ºã¹ý¶¨µã$£¨\frac{2}{7}£¬0£©$£®
½â´ð £¨±¾Ð¡ÌâÂú·Ö13·Ö£©
½â£º£¨¢ñ£©¡ßËıßÐÎA1B1A2B2µÄÃæ»ýΪ$4\sqrt{3}$£¬ÇÒ¿ÉÖªËıßÐÎA1B1A2B2ΪÁâÐΣ¬
¡à$\frac{1}{2}¡Á2a•2b=4\sqrt{3}$£¬¼´$ab=2\sqrt{3}$¢Ù¡£¨2·Ö£©
ÓÉÌâÒâ¿ÉµÃÖ±ÏßA2B2·½³ÌΪ£º$\frac{x}{a}+\frac{y}{b}=1$£¬¼´bx+ay-ab=0£¬
¡ßËıßÐÎA1B1A2B2ÄÚÇÐÔ²·½³ÌΪ${x^2}+{y^2}=\frac{12}{7}$£¬
¡àÔ²ÐÄ£¨0£¬0£©µ½Ö±ÏßA2B2µÄ¾àÀëΪ$\frac{{2\sqrt{3}}}{{\sqrt{7}}}$£¬¼´$\frac{|-ab|}{{\sqrt{{a^2}+{b^2}}}}=\frac{{2\sqrt{3}}}{{\sqrt{7}}}$¢Ú¡£¨4·Ö£©
ÓÉ¢Ù¢Ú£ºa=2£¬$b=\sqrt{3}$£¬
¡àÍÖÔ²CµÄ·½³ÌΪ£º$\frac{x^2}{4}+\frac{y^2}{3}=1$¡£¨6·Ö£©
£¨¢ò£©ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬
ÓÉ$\left\{{\begin{array}{l}{y=kx+m}\\{\frac{x^2}{4}+\frac{y^2}{3}=1}\end{array}}\right.$µÃ£º£¨3+4k2£©x2+8mkx+4£¨m2-3£©=0£¬
¡ßÖ±ÏßlÓëÍÖÔ²CÏཻÓÚM£¬NÁ½¸ö²»Í¬µÄµã£¬
¡à¡÷=64m2k2-16£¨3+4k2£©£¨m2-3£©£¾0µÃ£º3+4k2-m2£¾0¢Û
ÓÉΤ´ï¶¨Àí£º${x_1}+{x_2}=-\frac{8mk}{{3+4{k^2}}}£¬{x_1}{x_2}=\frac{{4£¨{m^2}-3£©}}{{3+4{k^2}}}$¡£¨8·Ö£©£¬
¡ßÒÔMNΪֱ¾¶µÄÔ²¹ýÍÖÔ²CµÄÓÒ¶¥µãA2£¬¡àA2M¡ÍA2N£¬$\overrightarrow{{A_2}M}•\overrightarrow{{A_2}N}=0$
ÓÉÓÚA2£¨2£¬0£©£¬ËùÒÔ£¨x1-2£¬y1£©•£¨x2-2£¬y2£©=£¨x1-2£©£¨x2-2£©+y1y2=0
⇒£¨x1-2£©£¨x2-2£©+£¨kx1+m£©£¨kx2+m£©=0
$⇒£¨{k^2}+1£©{x_1}{x_2}+£¨mk-2£©£¨{x_1}+{x_2}£©+{m^2}+4=0$
´Ó¶ø$£¨{k^2}+1£©¡Á\frac{{4£¨{m^2}-3£©}}{{3+4{k^2}}}+£¨mk-2£©£¨-\frac{8mk}{{3+4{k^2}}}£©+{m^2}+4=0$
¼´7m2+16mk+4k2=0¡àm=-2k£¬»ò$m=-\frac{2}{7}k$ÊʺϢۡ£¨11·Ö£©
µ±m=-2kʱ£¬Ö±Ïßl£ºy=kx-2k£¬¼´y=k£¨x-2£©£¬
ËùÒÔºã¹ý¶¨µã£¨2£¬0£©£¬
¡ß£¨2£¬0£©ÎªÍÖÔ²µÄÓÒ¶¥µã£¬ÓëÌâÒâ²»·û£¬ÉáÈ¥£»
µ±$m=-\frac{2}{7}k$ʱ£¬Ö±Ïßl£º$y=kx-\frac{2}{7}k$£¬¼´$y=k£¨x-\frac{2}{7}£©$£¬
ËùÒÔºã¹ý¶¨µã$£¨\frac{2}{7}£¬0£©$£®
×ÛÉÏ¿ÉÖª£ºÖ±Ïßl¹ý¶¨µã£¬¸Ã¶¨µãΪ$£¨\frac{2}{7}£¬0£©$£®¡£¨13·Ö£©
µãÆÀ ±¾Ì⿼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬Ö±Ïßϵ·½³ÌµÄÓ¦Ó㬿¼²éת»¯Ë¼ÏëÒÔ¼°Éè¶ø²»ÇóµÄ½âÌâ·½·¨£¬ÊÇÄÑÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{¦Ð}{6}+\frac{1}{3}$ | B£® | $\frac{¦Ð}{12}+1$ | C£® | $\frac{¦Ð}{12}+\frac{1}{3}$ | D£® | $\frac{¦Ð}{4}+\frac{1}{3}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ÃüÌâ¡°?x0¡ÊR£¬sinx0£¾1¡±µÄ·ñ¶¨ÊÇ¡°?x¡ÊR£¬sinx£¾1¡± | |
| B£® | ¡°Èôxy=0£¬Ôòx=0»òy=0¡±µÄÄæ·ñÃüÌâΪ¡°Èôx¡Ù0»òy¡Ù0£¬Ôòxy¡Ù0¡± | |
| C£® | ÔÚ¡÷ABCÖУ¬A£¾BÊÇsinA£¾sinBµÄ³ä·Ö²»±ØÒªÌõ¼þ | |
| D£® | Èôp¡Ä£¨©Vq£©Îª¼Ù£¬p¡Å£¨©Vq£©ÎªÕ棬Ôòp£¬qÍ¬Õæ»òͬ¼Ù |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | x1£¼x2£¬y1£¼y2 | B£® | x1£¼x2£¬y1£¾y2 | C£® | x1£¾x2£¬y1£¾y2 | D£® | x1£¾x2£¬y1£¼y2 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
| ¹¤×÷ÈÕ | ÐÇÆÚÒ» | ÐÇÆÚ¶þ | ÐÇÆÚÈý | ÐÇÆÚËÄ | ÐÇÆÚÎå |
| ÏÞÐгµÅÆÎ²ºÅ | 0ºÍ5 | 1ºÍ6 | 2ºÍ7 | 3ºÍ8 | 4ºÍ9 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 1 | B£® | 2 | C£® | 3 | D£® | 4 |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com