精英家教网 > 高中数学 > 题目详情
2.函数y=$\frac{3x}{x-1}$的值域为{y|y≠3}.

分析 分离常数得到$y=3+\frac{3}{x-1}$,从而可根据$\frac{3}{x-1}≠0$得出y的范围,即得出原函数的值域.

解答 解:$y=\frac{3(x-1)+3}{x-1}=3+\frac{3}{x-1}$;
∵$\frac{3}{x-1}≠0$;
∴y≠3;
∴该函数值域为{y|y≠3}.
故答案为:{y|y≠3}.

点评 考查函数值域的概念及求法,分离常数法的运用,以及反比例函数的值域.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知f(x)是定义在R上的奇函数,满足f(-$\frac{3}{2}$+x)=f($\frac{3}{2}$+x),当x∈[0,$\frac{3}{2}$]时,f(x)=ln(x2-x+1),则函数f(x)在区间[0,6]上的零点个数是(  )
A.3B.5C.7D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右顶点分别为A1、A2,上、下顶点分别为B2、B1,四边形A1B1A2B2的面积为4$\sqrt{3}$,且该四边形内切圆的方程为x2+y2=$\frac{12}{7}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)直线l:y=kx+m(k,m均为常数)与椭圆C相交于M,N两个不同的点(M,N异于A1,A2),若以MN为直径的圆过椭圆C的右顶点A2,试判断直线l能否过定点?若能,求出该定点坐标;若不能,也请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$=(1,-1),|$\overrightarrow{b}$|=1,且$\overrightarrow{b}$⊥($\overrightarrow{a}$+$\overrightarrow{b}$),则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某学校有若干学生社团,其中“文学社”、“围棋社”、“书法社”的人数分别为9、18、27.现采用分层抽样的方法从这三个社团中抽取6人外出参加活动.
(1)求应从这三个社团中分别抽取的人数;
(2)将抽取的6人进行编号,编号分别为A1,A2,A3,A4,A5,A6,现从这6人中随机地抽出2人组成活动小组.
①用所给编号列出所有可能的结果;
②设A为事件“编号为A1和A2的2人中恰有1人被抽到”,求事件A发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.高三年级有500名学生,为了了解数学学科的学习情况,现从中随机抽出若干名学生在一次测试中的数学成绩,制成如下频率分布表:
分组频数频率
[85,95)
[95,105)0.050
[105,115)0.200
[115,125)120.300
[125,135)0.275
[135,145)4
[145,155]0.050
合计
(1)表格中①②③④处的数值分别为1、0.025、0.100、1.000;
(2)在图中画出[85,155]的频率分布直方图;
(3)根据题干信息估计总体平均数,并估计总体落在[125,155]上的频率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中,内角A,B,C所对的边分别是a,b,c.已知2a=b+c,sin2A=sinBsinC.试判断三角形的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数$f(x)=ln(1+x)-\frac{x}{{{{(1+x)}^a}}}$,实数a>0.
(Ⅰ)若a=2时,求函数f(x)的单调区间;
(Ⅱ)若x>0时,不等式f(x)<0恒成立,求实数a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.复平面上平行四边形ABCD的四个顶点中,A、B、C所对应的复数分别为2-3i、-2-3i、-3+2i,则D点对应的复数是(  )
A.1+2iB.1-2iC.2-iD.2+i

查看答案和解析>>

同步练习册答案