精英家教网 > 高中数学 > 题目详情
16.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$=(1,-1),|$\overrightarrow{b}$|=1,且$\overrightarrow{b}$⊥($\overrightarrow{a}$+$\overrightarrow{b}$),则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{3π}{4}$

分析 求得向量$\overrightarrow{a}$的模,由向量垂直的条件:数量积为0,化简,再由数量积的定义和向量的平方即为模的平方,解方程可得向量夹角的余弦值,进而得到向量的夹角.

解答 解:向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$=(1,-1),|$\overrightarrow{b}$|=1,且$\overrightarrow{b}$⊥($\overrightarrow{a}$+$\overrightarrow{b}$),
可得|$\overrightarrow{a}$|=$\sqrt{2}$,$\overrightarrow{b}$•($\overrightarrow{a}$+$\overrightarrow{b}$)=0,
即为$\overrightarrow{a}$•$\overrightarrow{b}$+$\overrightarrow{b}$2=0,
即有|$\overrightarrow{a}$|•|$\overrightarrow{b}$|•cos<$\overrightarrow{a}$,$\overrightarrow{b}$>+|$\overrightarrow{b}$|2=$\sqrt{2}$cos<$\overrightarrow{a}$,$\overrightarrow{b}$>+1=0,
则cos<$\overrightarrow{a}$,$\overrightarrow{b}$>=-$\frac{\sqrt{2}}{2}$,
由0≤<$\overrightarrow{a}$,$\overrightarrow{b}$>≤π,
可得$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{3π}{4}$.
故选:D.

点评 本题考查向量数量积的定义和向量垂直的条件:数量积为0,以及向量的平方即为模的平方,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.设x>0,由不等式x+$\frac{1}{x}$≥2,x+$\frac{4}{{x}^{2}}$≥3,x+$\frac{27}{{x}^{3}}$≥4,…,推广到x+$\frac{a}{{x}^{n}}$≥n+1,则a=(  )
A.2nB.2nC.n2D.nn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列命题中正确的是(  )
A.命题“?x0∈R,sinx0>1”的否定是“?x∈R,sinx>1”
B.“若xy=0,则x=0或y=0”的逆否命题为“若x≠0或y≠0,则xy≠0”
C.在△ABC中,A>B是sinA>sinB的充分不必要条件
D.若p∧(¬q)为假,p∨(¬q)为真,则p,q同真或同假

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图是某班甲、乙两位同学在5次阶段性检测中的数学成绩(百分制)的茎叶图,甲、乙两位同学得分的中位数分别为x1,x2,得分的方差分别为y1,y2,则下列结论正确的是(  )
A.x1<x2,y1<y2B.x1<x2,y1>y2C.x1>x2,y1>y2D.x1>x2,y1<y2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某公司有A、B、C、D、E五辆汽车,其中A、B两辆汽车的车牌尾号均为1,C、D两辆汽车的车牌尾号均为2,E车的车牌尾号为6.已知在非限行日,每辆车可能出车或不出车,A、B、E三辆汽车每天出车的概率均为$\frac{2}{3}$,C、D两辆汽车每天出车的概率均为$\frac{1}{2}$,五辆汽车是否出车相互独立,该公司所在地区汽车限行规定如下:
工作日星期一星期二星期三星期四星期五
限行车牌尾号0和51和62和73和84和9
例如,星期一禁止车牌尾号为0和5的车辆通行.
(1)求该公司在星期一至少有2辆汽车出车的概率;
(2)设X表示该公司在星期二和星期三两天出车的车辆数之和,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知向量$\overrightarrow{a}$=(x,1),$\overrightarrow{b}$=(2,-1),在区间[-1,1]上随机地取一个数x,则事件“$\overrightarrow{a}$•$\overrightarrow{b}$≥0”发生的概率为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数y=$\frac{3x}{x-1}$的值域为{y|y≠3}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=lnx+x2+x.正实数x1,x2满足f(x1)+f(x2)+x1x2=0,则下述结论中正确的一项是(  )
A.x1+x2≥$\frac{\sqrt{5}-1}{2}$B.x1+x2<$\frac{\sqrt{5}-1}{2}$C.x1+x2≥$\frac{\sqrt{5}+1}{2}$D.x1+x2<$\frac{\sqrt{5}+1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=cos($\frac{2π}{3}$x)+(a-1)sin($\frac{π}{3}$x)+a,g(x)=2x-x2,若f[g(x)]≤0对x∈[0,1]恒成立,则实数a的取值范围是(  )(参考公式:cos(2α)=cos2α-sin2α=2cos2α-1=1-2sin2α)
A.(-∞,$\sqrt{3}$-1]B.(-∞,0]C.[0,$\sqrt{3}$-1]D.(-∞,1-$\sqrt{3}$]

查看答案和解析>>

同步练习册答案