精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=lnx+x2+x.正实数x1,x2满足f(x1)+f(x2)+x1x2=0,则下述结论中正确的一项是(  )
A.x1+x2≥$\frac{\sqrt{5}-1}{2}$B.x1+x2<$\frac{\sqrt{5}-1}{2}$C.x1+x2≥$\frac{\sqrt{5}+1}{2}$D.x1+x2<$\frac{\sqrt{5}+1}{2}$

分析 得到(x1+x22+(x1+x2)=x1x2-ln(x1x2),这样令t=x1x2,t>0,容易求得函数t-lnt的最小值为1,从而得到(x1+x22+(x1+x2)≥1,解这个关于x1+x2的一元二次不等式即可得出要证的结论.

解答 由f(x1)+f(x2)+x1x2=0,
即lnx1+x12+x1+lnx2+x22+x2+x1x2=0,
从而(x1+x22+(x1+x2)=x1x2-ln(x1x2),
令t=x1x2,则由h(t)=t-lnt得,h′(t)=$\frac{t-1}{t}$,
可知,h(t)在区间(0,1)上单调递减,在区间(1,+∞)上单调递增,
∴h(t)≥h(1)=1,
∴(x1+x22+(x1+x2)≥1,又x1+x2>0,因此x1+x2≥$\frac{\sqrt{5}-1}{2}$成立.
故选:A.

点评 本题考查了函数的单调性问题,考查导数的应用以及换元思想、转化思想,不等式的解法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知等差数列{an}的a1=-20,公差为d,前n项和为Sn,则“3<d<5”是“Sn的最小值仅为S6”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$=(1,-1),|$\overrightarrow{b}$|=1,且$\overrightarrow{b}$⊥($\overrightarrow{a}$+$\overrightarrow{b}$),则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.高三年级有500名学生,为了了解数学学科的学习情况,现从中随机抽出若干名学生在一次测试中的数学成绩,制成如下频率分布表:
分组频数频率
[85,95)
[95,105)0.050
[105,115)0.200
[115,125)120.300
[125,135)0.275
[135,145)4
[145,155]0.050
合计
(1)表格中①②③④处的数值分别为1、0.025、0.100、1.000;
(2)在图中画出[85,155]的频率分布直方图;
(3)根据题干信息估计总体平均数,并估计总体落在[125,155]上的频率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中,内角A,B,C所对的边分别是a,b,c.已知2a=b+c,sin2A=sinBsinC.试判断三角形的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.定义在R上的函数y=f(x)满足:f(x)+f'(x)>1,f(0)=2018,则不等式exf(x)-ex>2017(其中e为自然对数的底数)的解集为(  )
A.(2017,+∞)B.(-∞,0)∪(2017,+∞)C.(0,+∞)D.(-∞,0)∪(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数$f(x)=ln(1+x)-\frac{x}{{{{(1+x)}^a}}}$,实数a>0.
(Ⅰ)若a=2时,求函数f(x)的单调区间;
(Ⅱ)若x>0时,不等式f(x)<0恒成立,求实数a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在△ABC中,A=60°,AC=2,记BC=a,若△ABC是唯一确定的锐角三角形,则a的取值范围是[2,2$\sqrt{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.甲、乙两名同学八次数学测试成绩如茎叶图所示,则甲同学成绩的众数与乙同学成绩的中位数依次为(  )
A.85,86B.85,85C.86,85D.86,86

查看答案和解析>>

同步练习册答案