精英家教网 > 高中数学 > 题目详情
7.高三年级有500名学生,为了了解数学学科的学习情况,现从中随机抽出若干名学生在一次测试中的数学成绩,制成如下频率分布表:
分组频数频率
[85,95)
[95,105)0.050
[105,115)0.200
[115,125)120.300
[125,135)0.275
[135,145)4
[145,155]0.050
合计
(1)表格中①②③④处的数值分别为1、0.025、0.100、1.000;
(2)在图中画出[85,155]的频率分布直方图;
(3)根据题干信息估计总体平均数,并估计总体落在[125,155]上的频率.

分析 (1)根据[115,125)内的频数和频率求出样本容量,
再计算表格中①②③④处的数值;
(2)在图中画出[85,155]的频率分布直方图即可;
(3)根据频率分布直方图,计算平均数以及[125,155]上的频率值.

解答 解:(1)根据频率表知,[115,125)内的频数为12,频率为0.300,
∴样本容量为$\frac{12}{0.300}$=40;
由频率分布直方图知,[85,95)内的频率为0.0025×10=0.025,
频数为40×0.025=1,∴表格中①处数值是1,②处数值是0.025;
根据频率和为1,知③处数值是1-0.025-0.050-0.200-0.300-0.275-0.050=0.100;
④处的数值是1.000;
故表格中①②③④处的数值分别为:1、0.025、0.100、1.000;
(2)在图中画出[85,155]的频率分布直方图,如图所示;
(3)根据频率分布直方图,计算平均数为
$\overline{x}$=90×0.025+100×0.05+110×0.2+120×0.3+130×0.275+140×0.1+150×0.05=122.5,
即估计总体平均数为122.5;
估计总体在[125,155]上的频率为0.275+0.100+0.050=0.425.

点评 本题考查了频率分布直方图的应用问题,也考查了识图、用图的能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知直线l的参数方程为$\left\{\begin{array}{l}{x=tcosα}\\{y=1+tsinα}\end{array}\right.$(0≤α<π,t为参数),曲线C的极坐标方程为ρ=$\frac{4cosθ}{si{n}^{2}θ}$.
(Ⅰ)将曲线C的极坐标方程化为直角坐标方程,并说明曲线C的形状;
(Ⅱ)若直线l经过点(1,0),求直线l被曲线C截得的线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图是某班甲、乙两位同学在5次阶段性检测中的数学成绩(百分制)的茎叶图,甲、乙两位同学得分的中位数分别为x1,x2,得分的方差分别为y1,y2,则下列结论正确的是(  )
A.x1<x2,y1<y2B.x1<x2,y1>y2C.x1>x2,y1>y2D.x1>x2,y1<y2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知向量$\overrightarrow{a}$=(x,1),$\overrightarrow{b}$=(2,-1),在区间[-1,1]上随机地取一个数x,则事件“$\overrightarrow{a}$•$\overrightarrow{b}$≥0”发生的概率为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数y=$\frac{3x}{x-1}$的值域为{y|y≠3}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.一口袋中装有大小相同的2个白球和4个黑球,每次从袋中任意摸出一个球,若采取不放回抽样方式,从中摸出两个球,则摸得白球的个数X的方差D(X)=$\frac{16}{45}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=lnx+x2+x.正实数x1,x2满足f(x1)+f(x2)+x1x2=0,则下述结论中正确的一项是(  )
A.x1+x2≥$\frac{\sqrt{5}-1}{2}$B.x1+x2<$\frac{\sqrt{5}-1}{2}$C.x1+x2≥$\frac{\sqrt{5}+1}{2}$D.x1+x2<$\frac{\sqrt{5}+1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知定义在R上的奇函数f(x)满足f(x)=f(x+4)且f(3)=0,则方程f(x)=0在区间(0,10)内整数根有(  )
A.4个B.5个C.6个D.7个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=$\frac{{x}^{2}}{a(x+b)}$在点(2,f(2))处的切线方程为y=2.
(1)求a,b的值;
(2)已知各项均为负的数列{an}满足4Sn•f($\frac{1}{{a}_{n}}$)=1,(Sn为数列{an}的前n项和),求证:-$\frac{1}{{a}_{n+1}}$<ln$\frac{n+1}{n}$<-$\frac{1}{{a}_{n}}$;
(3)设bn=-$\frac{1}{{a}_{n}}$,Tn为数列{bn}的前n项和,求证:T2017-1<ln2017<T2016

查看答案和解析>>

同步练习册答案