精英家教网 > 高中数学 > 题目详情
12.一口袋中装有大小相同的2个白球和4个黑球,每次从袋中任意摸出一个球,若采取不放回抽样方式,从中摸出两个球,则摸得白球的个数X的方差D(X)=$\frac{16}{45}$.

分析 根据题意知随机变量X的可能取值,计算对应的概率值,求出数学期望和方差.

解答 解:根据题意,摸得白球的个数为X,则X的可能取值为0,1,2;
计算P(X=0)=$\frac{4}{6}$×$\frac{3}{5}$=$\frac{2}{5}$,
p(X=1)=$\frac{4}{6}$×$\frac{2}{5}$+$\frac{2}{6}$×$\frac{4}{5}$=$\frac{8}{15}$,
p(X=2)=$\frac{2}{6}$×$\frac{1}{5}$=$\frac{1}{15}$;
∴随机变量X的数学期望为:
E(X)=0×$\frac{2}{5}$+1×$\frac{8}{15}$+2×$\frac{1}{15}$=$\frac{2}{3}$,
方差为:D(X)=${(0-\frac{2}{3})}^{2}$×$\frac{2}{5}$+${(1-\frac{2}{3})}^{2}$×$\frac{8}{15}$+${(2-\frac{2}{3})}^{2}$×$\frac{1}{15}$=$\frac{16}{45}$.
故答案为:$\frac{16}{45}$.

点评 本题考查了离散型随机变量的分布列、数学期望与方差的计算问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如图,三棱柱ABC-A1B1Cl中,M,N分别为CC1,A1B1的中点.
(I)证明:直线MN∥平面CAB1
(II)BA=BC=BB1,CA=CB1,CA⊥CB1,∠ABB1=60°,求平面AB1C和平面A1B1C1所成的角(锐角)的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知等差数列{an}中,a1=1,且a1,a2,a4+2成等比数列.
(1)求数列{an}的通项公式及其前n项和Sn
(2)设${b_n}={2^{{{({-1})}^n}{a_n}}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=(x-1)ex-$\frac{1}{2}$ax2(a∈R),这里e是自然对数的底数.
(1)求f(x)的单调区间;
(2)试讨论f(x)在区间(a-1,+∞)上是否存在极小值点?若存在,请求出极小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.高三年级有500名学生,为了了解数学学科的学习情况,现从中随机抽出若干名学生在一次测试中的数学成绩,制成如下频率分布表:
分组频数频率
[85,95)
[95,105)0.050
[105,115)0.200
[115,125)120.300
[125,135)0.275
[135,145)4
[145,155]0.050
合计
(1)表格中①②③④处的数值分别为1、0.025、0.100、1.000;
(2)在图中画出[85,155]的频率分布直方图;
(3)根据题干信息估计总体平均数,并估计总体落在[125,155]上的频率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的长轴长为6,且椭圆C与圆M:(x-2)2+y2=$\frac{40}{9}$的公共弦长为$\frac{4\sqrt{10}}{3}$.
(1)求椭圆C的方程,
(2)过点P(0,2)作斜率为k(k≠0)的直线l与椭圆C交于两点A,B,试判断在x轴上是否存在点D,使得△ADB为以AB为底边的等腰三角形,若存在,求出点D的横坐标的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.定义在R上的函数y=f(x)满足:f(x)+f'(x)>1,f(0)=2018,则不等式exf(x)-ex>2017(其中e为自然对数的底数)的解集为(  )
A.(2017,+∞)B.(-∞,0)∪(2017,+∞)C.(0,+∞)D.(-∞,0)∪(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知某个几何体的三视图如图所示,根据图中标出的尺寸,可得这个几何体最长的棱长度为(  )
A.$2\sqrt{2}$B.$\sqrt{5}$C.3D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在△ABC中,a,b,c分别是内角A,B,C的对边,若A=$\frac{2π}{3}$,b=$\sqrt{2}$,△ABC的面积为$\sqrt{3}$,则a的值为(  )  )
A.$\sqrt{6}$B.2$\sqrt{2}$C.2$\sqrt{3}$D.$\sqrt{14}$

查看答案和解析>>

同步练习册答案