精英家教网 > 高中数学 > 题目详情
2.在△ABC中,a,b,c分别是内角A,B,C的对边,若A=$\frac{2π}{3}$,b=$\sqrt{2}$,△ABC的面积为$\sqrt{3}$,则a的值为(  )  )
A.$\sqrt{6}$B.2$\sqrt{2}$C.2$\sqrt{3}$D.$\sqrt{14}$

分析 利用△ABC的面积为$\sqrt{3}$=$\frac{1}{2}$bcsinA,求解出c,根据余弦定理即可求出a的值.

解答 解:由△ABC的面积为$\sqrt{3}$=$\frac{1}{2}$bcsinA,
即$2\sqrt{3}$=$\sqrt{2}×$$\frac{\sqrt{3}}{2}$×c.
可得:c=2$\sqrt{2}$.
由余弦定理:a2=b2+c2-2bccosA,
即${a}^{2}=2+8-2\sqrt{2}×2\sqrt{2}×(-\frac{1}{2})$=14.
∴a=$\sqrt{14}$.
故选:D.

点评 本题考查△ABC的面积公式的运用和余弦定理的合理计算.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.一口袋中装有大小相同的2个白球和4个黑球,每次从袋中任意摸出一个球,若采取不放回抽样方式,从中摸出两个球,则摸得白球的个数X的方差D(X)=$\frac{16}{45}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.学生会为了调查学生对2018年俄罗斯世界杯的关注是否与性别有关,抽样调查100人,得到如下数据:
不关注关注总计
男生301545
女生451055
总计7525100
根据表中数据,通过计算统计量K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,并参考一下临界数据:
P(K2>k00.500.400.250.150.100.050.0250.0100.0050.001
  k00.4550.7081.3232.0722.7063.845.0246.6357.87910.83
若由此认为“学生对2018年俄罗斯年世界杯的关注与性别有关”,则此结论出错的概率不超过(  )
A.0.10B.0.05C.0.025D.0.01

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图所示的三角形数阵叫“牛顿调和三角形”,它们是整数的倒数组成的,第n行有n个数且两端的数均为$\frac{1}{n}$(n≥2),每个数是它下一行左右相邻两数的和,如$\frac{1}{1}$=$\frac{1}{2}$+$\frac{1}{2}$,$\frac{1}{2}$=$\frac{1}{3}$+$\frac{1}{6}$,$\frac{1}{3}$=$\frac{1}{4}$+$\frac{1}{12}$,…,则第6行第3个数(从左往右数)为$\frac{1}{60}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=$\frac{{x}^{2}}{a(x+b)}$在点(2,f(2))处的切线方程为y=2.
(1)求a,b的值;
(2)已知各项均为负的数列{an}满足4Sn•f($\frac{1}{{a}_{n}}$)=1,(Sn为数列{an}的前n项和),求证:-$\frac{1}{{a}_{n+1}}$<ln$\frac{n+1}{n}$<-$\frac{1}{{a}_{n}}$;
(3)设bn=-$\frac{1}{{a}_{n}}$,Tn为数列{bn}的前n项和,求证:T2017-1<ln2017<T2016

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若角α=600°的终边上有一点(a,-2),则a的值是(  )
A.$-\frac{{2\sqrt{3}}}{3}$B.$\frac{{2\sqrt{3}}}{3}$C.$±\frac{{2\sqrt{3}}}{3}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)已知f(α)=$\frac{{sin(π-α)cos(π-α)cos(\frac{3π}{2}+α)}}{{cos(\frac{π}{2}+α)sin(π+α)}}$,若α为第二象限角,且$cos(α-\frac{π}{2})=\frac{2}{5}$,求f(α)的值;
(2)已知tanα=3,求2sin2α+sinαcosα-cos2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.计算:$\frac{i-2\sqrt{3}}{1+2\sqrt{3}i}$+(3+i17)-${(\frac{1+i}{\sqrt{2}})}^{20}$=4+2i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设数列{an}的前n项和为Sn,对一切n∈N*,点(n,$\frac{{S}_{n}}{n}$)都在函数f(x)=x+$\frac{{a}_{n}}{2x}$的图象上.
(1)求a1,a2,a3的值,猜想an的表达式,并用数学归纳法证明;
(2)将数列{an}依次按1项、2项、3项、4项循环地分为
(a1),(a2,a3),(a4,a5,a6),(a7,a8,a9,a10);
(a11),(a12,a13),(a14,a15,a16),(a17,a18,a19,a20);
(a21),(a22,a23),(a24,a25,a26),(a27,a28,a29,a30);…
分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为{bn},求b2018-b1314的值.

查看答案和解析>>

同步练习册答案