精英家教网 > 高中数学 > 题目详情
1.已知某个几何体的三视图如图所示,根据图中标出的尺寸,可得这个几何体最长的棱长度为(  )
A.$2\sqrt{2}$B.$\sqrt{5}$C.3D.$2\sqrt{3}$

分析 由三视图可知:该几何体为三棱锥P-ABC.由正方体的性质可得:这个几何体最长的棱长度为PC.

解答 解:由三视图可知:该几何体为三棱锥P-ABC.
由正方体的性质可得:这个几何体最长的棱长度为PC=2$\sqrt{3}$.
故选:D.

点评 本题考查了三棱锥与正方体的三视图、体积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.在三棱柱ABC-A1B1C1中,侧面ABB1A1为矩形,AB=2,AA1=2$\sqrt{2}$,D是AA1的中点,BD与AB1交于点O,且OC⊥平面ABB1A1
(Ⅰ)证明:平面AB1C⊥平面BCD;
(Ⅱ)若G为B1C上的一点,A1G∥平面BCD,证明:G为B1C的中点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.一口袋中装有大小相同的2个白球和4个黑球,每次从袋中任意摸出一个球,若采取不放回抽样方式,从中摸出两个球,则摸得白球的个数X的方差D(X)=$\frac{16}{45}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知a,b,c分别为△ABC内角A,B,C的对边,$\frac{sinA}{sinC}=\frac{asinB}{a-bcosC}$.
(Ⅰ)求角B的大小;
(Ⅱ)若△ABC边AC上的高h=b,求$\frac{sinB}{tanA}+\frac{sinB}{tanC}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知定义在R上的奇函数f(x)满足f(x)=f(x+4)且f(3)=0,则方程f(x)=0在区间(0,10)内整数根有(  )
A.4个B.5个C.6个D.7个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足2sin(A-$\frac{π}{3}$)=$\sqrt{3}$,sin(B-C)=4cosBsinC,则$\frac{b}{c}$等于(  )
A.2$\sqrt{2}$+1B.2$\sqrt{2}$-1C.$\sqrt{6}$+1D.$\sqrt{6}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.学生会为了调查学生对2018年俄罗斯世界杯的关注是否与性别有关,抽样调查100人,得到如下数据:
不关注关注总计
男生301545
女生451055
总计7525100
根据表中数据,通过计算统计量K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,并参考一下临界数据:
P(K2>k00.500.400.250.150.100.050.0250.0100.0050.001
  k00.4550.7081.3232.0722.7063.845.0246.6357.87910.83
若由此认为“学生对2018年俄罗斯年世界杯的关注与性别有关”,则此结论出错的概率不超过(  )
A.0.10B.0.05C.0.025D.0.01

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图所示的三角形数阵叫“牛顿调和三角形”,它们是整数的倒数组成的,第n行有n个数且两端的数均为$\frac{1}{n}$(n≥2),每个数是它下一行左右相邻两数的和,如$\frac{1}{1}$=$\frac{1}{2}$+$\frac{1}{2}$,$\frac{1}{2}$=$\frac{1}{3}$+$\frac{1}{6}$,$\frac{1}{3}$=$\frac{1}{4}$+$\frac{1}{12}$,…,则第6行第3个数(从左往右数)为$\frac{1}{60}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.计算:$\frac{i-2\sqrt{3}}{1+2\sqrt{3}i}$+(3+i17)-${(\frac{1+i}{\sqrt{2}})}^{20}$=4+2i.

查看答案和解析>>

同步练习册答案