3£®Ä³Ñ§Ð£ÓÐÈô¸ÉѧÉúÉçÍÅ£¬ÆäÖС°ÎÄѧÉ硱¡¢¡°Î§ÆåÉ硱¡¢¡°Êé·¨É硱µÄÈËÊý·Ö±ðΪ9¡¢18¡¢27£®ÏÖ²ÉÓ÷ֲã³éÑùµÄ·½·¨´ÓÕâÈý¸öÉçÍÅÖгéÈ¡6ÈËÍâ³ö²Î¼Ó»î¶¯£®
£¨1£©ÇóÓ¦´ÓÕâÈý¸öÉçÍÅÖзֱð³éÈ¡µÄÈËÊý£»
£¨2£©½«³éÈ¡µÄ6È˽øÐбàºÅ£¬±àºÅ·Ö±ðΪA1£¬A2£¬A3£¬A4£¬A5£¬A6£¬ÏÖ´ÓÕâ6ÈËÖÐËæ»úµØ³é³ö2ÈË×é³É»î¶¯Ð¡×飮
¢ÙÓÃËù¸ø±àºÅÁгöËùÓпÉÄܵĽá¹û£»
¢ÚÉèAΪʼþ¡°±àºÅΪA1ºÍA2µÄ2ÈËÖÐÇ¡ÓÐ1È˱»³éµ½¡±£¬ÇóʼþA·¢ÉúµÄ¸ÅÂÊ£®

·ÖÎö £¨1£©ÓÉÌâÒâ¿ÉµÃ³éÈ¡±ÈÀý£¬¿ÉµÃÏàÓ¦µÄÈËÊý£»
£¨2£©ÁоٿɵôÓ6ÃûÈËÔ±ÖÐËæ»ú³éÈ¡2ÃûµÄËùÓнá¹û¹²15ÖÖ£»Ê¼þA°üº¬ÉÏÊö8¸ö£¬ÓɸÅÂʹ«Ê½¿ÉµÃ£®

½â´ð ½â£º£¨1£©Ó¦´Ó¡°ÎÄѧÉ硱¡¢¡°Î§ÆåÉ硱¡¢¡°Êé·¨É硱ÖгéÈ¡µÄÈËÊý·Ö±ðÊÇ£º1£¬2£¬3£¬
£¨2£©¢Ù´Ó6ÃûÔ˶¯Ô±ÖÐËæ»ú³éÈ¡2È˲μÓË«´ò±ÈÈüµÄËùÓпÉÄܽá¹ûΪ£º
£¨A1£¬A2£©£¬£¨A1£¬A3£©£¬£¨A1£¬A4£©£¬£¨A1£¬A5£©£¬£¨A1£¬A6£©£¬
£¨A2£¬A3£©£¬£¨A2£¬A4£©£¬£¨A2£¬A5£©£¬£¨A2£¬A6£©£¬£¨A3£¬A4£©£¬
£¨A3£¬A5£©£¬£¨A3£¬A6£©£¬£¨A4£¬A5£©£¬£¨A4£¬A6£©£©£¬£¨A5£¬A6£©£¬¹²15ÖÖ£®
¢ÚʼþA°üº¬£º£¨A1£¬A3£©£¬£¨A1£¬A4£©£¬£¨A1£¬A5£©£¬£¨A1£¬A6£©£¬
£¨A2£¬A3£©£¬£¨A2£¬A4£©£¬£¨A2£¬A5£©£¬£¨A2£¬A6£©£©£¬¹²8¸ö»ù±¾Ê¼þ£®
Òò´Ë£¬Ê¼þA·¢ÉúµÄ¸ÅÂÊP£¨A£©=$\frac{8}{15}$£®

µãÆÀ ±¾Ì⿼²é¹Åµä¸ÅÐͼ°Æä¸ÅÂʹ«Ê½£¬Éæ¼°·Ö²ã³éÑù£¬Êô»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªÕýÏîÊýÁÐ{an}µÄÊ×Ïîa1=1£¬ÇÒ£¨n+1£©a${\;}_{n+1}^{2}$+anan+1-na${\;}_{n}^{2}$=0¶Ô?n¡ÊN*¶¼³ÉÁ¢£®
£¨1£©Çó{an}µÄͨÏʽ£»
£¨2£©¼Çbn=a2n-1a2n+1£¬ÊýÁÐ{bn}µÄǰnÏîºÍΪTn£¬Ö¤Ã÷£ºTn£¼$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÈôÖ±Ïßax+y-2=0ÓëÔ²ÐÄΪCµÄÔ²£¨x-1£©2+£¨y-a£©2=16ÏཻÓÚA£¬BÁ½µã£¬ÇÒ$\overrightarrow{CA}•\overrightarrow{CB}=0$£¬ÔòʵÊýaµÄÖµÊÇ-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®Ä³¹«Ë¾ÓÐA¡¢B¡¢C¡¢D¡¢EÎåÁ¾Æû³µ£¬ÆäÖÐA¡¢BÁ½Á¾Æû³µµÄ³µÅÆÎ²ºÅ¾ùΪ1£¬C¡¢DÁ½Á¾Æû³µµÄ³µÅÆÎ²ºÅ¾ùΪ2£¬E³µµÄ³µÅÆÎ²ºÅΪ6£®ÒÑÖªÔÚ·ÇÏÞÐÐÈÕ£¬Ã¿Á¾³µ¿ÉÄܳö³µ»ò²»³ö³µ£¬A¡¢B¡¢EÈýÁ¾Æû³µÃ¿Ìì³ö³µµÄ¸ÅÂʾùΪ$\frac{2}{3}$£¬C¡¢DÁ½Á¾Æû³µÃ¿Ìì³ö³µµÄ¸ÅÂʾùΪ$\frac{1}{2}$£¬ÎåÁ¾Æû³µÊÇ·ñ³ö³µÏ໥¶ÀÁ¢£¬¸Ã¹«Ë¾ËùÔÚµØÇøÆû³µÏÞÐй涨ÈçÏ£º
¹¤×÷ÈÕÐÇÆÚÒ»ÐÇÆÚ¶þÐÇÆÚÈýÐÇÆÚËÄÐÇÆÚÎå
ÏÞÐгµÅÆÎ²ºÅ0ºÍ51ºÍ62ºÍ73ºÍ84ºÍ9
ÀýÈ磬ÐÇÆÚÒ»½ûÖ¹³µÅÆÎ²ºÅΪ0ºÍ5µÄ³µÁ¾Í¨ÐУ®
£¨1£©Çó¸Ã¹«Ë¾ÔÚÐÇÆÚÒ»ÖÁÉÙÓÐ2Á¾Æû³µ³ö³µµÄ¸ÅÂÊ£»
£¨2£©ÉèX±íʾ¸Ã¹«Ë¾ÔÚÐÇÆÚ¶þºÍÐÇÆÚÈýÁ½Ìì³ö³µµÄ³µÁ¾ÊýÖ®ºÍ£¬ÇóXµÄ·Ö²¼Áм°ÊýѧÆÚÍû£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®Ä³ËÄÀą̂µÄÈýÊÓͼÈçͼËùʾ£¬Ôò¸ÃËÄÀą̂µÄÌå»ýÊÇ£¨¡¡¡¡£©
A£®7B£®6C£®5D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®º¯Êýy=$\frac{3x}{x-1}$µÄÖµÓòΪ{y|y¡Ù3}£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵʽxOyÖУ¬ÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¨-c£¬0£©¡¢F2£¨c£¬0£©£¬ÒÑÖª£¨1£¬e£©ºÍ£¨e£¬$\frac{\sqrt{3}}{2}$£©¶¼ÔÚÍÖÔ²ÉÏ£¬ÆäÖÐeΪÍÖÔ²µÄÀëÐÄÂÊ£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©¹ýµãF2µÄÖ±ÏßlÓëÍÖÔ²CÏཻÓÚP£¬QÁ½µã£¬ÇÒ$\overrightarrow{P{F}_{2}}$•$\overrightarrow{{F}_{1}Q}$+$\overrightarrow{{F}_{1}{F}_{2}}$•$\overrightarrow{Q{F}_{2}}$=4£¬ÇóÖ±ÏßlµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÏÂÁÐÃüÌâÖУ¬ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®Èôa£¾b£¬c£¾d£¬Ôòac£¾bdB£®Èôac£¾bc£¬Ôòa£¾b
C£®Èôa£¾b£¬c£¾d£¬Ôòa-c£¾b-dD£®Èô$\frac{a}{{c}^{2}}$£¼$\frac{b}{{c}^{2}}$£¬Ôòa£¼b

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÏÂÃæ¼¸ÖÖÍÆÀíÖÐÊÇÑÝÒïÍÆÀíµÄΪ£¨¡¡¡¡£©
A£®¿ÆÑ§¼ÒÀûÓÃÓãµÄ³Á¸¡Ô­ÀíÖÆÔìDZͧ
B£®²ÂÏëÊýÁÐ$\frac{1}{1¡Á2}$£¬$\frac{1}{2¡Á3}$£¬$\frac{1}{3¡Á4}$£¬¡­µÄͨÏʽΪan=$\frac{1}{n£¨n+1£©}$£¨n¡ÊN+£©
C£®°ë¾¶ÎªrµÄÔ²µÄÃæ»ýS=¦Ðr2£¬Ôòµ¥Î»Ô²µÄÃæ»ýS=¦Ð
D£®ÓÉÆ½ÃæÖ±½Ç×ø±êϵÖÐÔ²µÄ·½³ÌΪ£¨x-a£©2+£¨y-b£©2=r2£¬ÍƲâ¿Õ¼äÖ±½Ç×ø±êϵÖÐÇòµÄ·½³ÌΪ£¨x-a£©2+£¨y-b£©2+£¨z-c£©2=r2

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸