精英家教网 > 高中数学 > 题目详情
6.下列命题中,正确的是(  )
A.若a>b,c>d,则ac>bdB.若ac>bc,则a>b
C.若a>b,c>d,则a-c>b-dD.若$\frac{a}{{c}^{2}}$<$\frac{b}{{c}^{2}}$,则a<b

分析 A,要满足a>b,c>d,才能得到ac>bd;
B,c<0时,由ac>bc,得a>b;
C,若a>b,c>d,则a-c>b-d或a-c<b-d或a-c=b-d;
D,若$\frac{a}{{c}^{2}}$<$\frac{b}{{c}^{2}}$,则$\frac{1}{{c}^{2}}>0$,则a<b;

解答 解:对于A,要满足a>b,c>d,才能得到ac>bd,故错;
对于B,c<0时,由ac>bc,得a>b,故错;
对于C,若a>b,c>d,则a-c>b-d或a-c<b-d或a-c=b-d,故错;
对于D,若$\frac{a}{{c}^{2}}$<$\frac{b}{{c}^{2}}$,则$\frac{1}{{c}^{2}}>0$,则a<b,故正确;
故选:D.

点评 本题考查了不等式的性质及其应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.如图,三棱柱ABC-A1B1Cl中,M,N分别为CC1,A1B1的中点.CA⊥CB1,CA=CB1,BA=BC=BB1
(Ⅰ)求证:直线MN∥平面CAB1
(Ⅱ)求证:直线BA1⊥平面CAB1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某学校有若干学生社团,其中“文学社”、“围棋社”、“书法社”的人数分别为9、18、27.现采用分层抽样的方法从这三个社团中抽取6人外出参加活动.
(1)求应从这三个社团中分别抽取的人数;
(2)将抽取的6人进行编号,编号分别为A1,A2,A3,A4,A5,A6,现从这6人中随机地抽出2人组成活动小组.
①用所给编号列出所有可能的结果;
②设A为事件“编号为A1和A2的2人中恰有1人被抽到”,求事件A发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中,内角A,B,C所对的边分别是a,b,c.已知2a=b+c,sin2A=sinBsinC.试判断三角形的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.为了普及环保知识,增强环保意识,某大学从大学理工类专业的A班和文史专业的B班各抽取20名同学参加环保知识测试,统计得到成绩与专业的列联表:
优秀非优秀总计
A班14620
B班71320
总计211940
附:参考公式及数据:
①K2统计量:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d);
②独立性检验的临界值表:
P(K≥k00.0500.010
k03.8416.635
(  )
A.有99%的把握认为环保知识测试成绩与专业有关
B.有99%的把握认为环保知识测试成绩与专业无关
C.有95%的把握认为环保知识测试成绩与专业无关
D.有95%的把握认为环保知识测试成绩与专业有关

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数$f(x)=ln(1+x)-\frac{x}{{{{(1+x)}^a}}}$,实数a>0.
(Ⅰ)若a=2时,求函数f(x)的单调区间;
(Ⅱ)若x>0时,不等式f(x)<0恒成立,求实数a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,已知正四棱柱(底面为正方形,侧棱与底面垂直)ABCD-A1B1C1D1的底面边长为3,侧棱长为4,连结A1B,过A作AF⊥A1B垂足为F,且AF的延长线交B1B于E.
(Ⅰ)求证:AE⊥D1B;
(Ⅱ)求三棱锥B-AEC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,已知矩形BB1C1C所在平面与底面ABB1N垂直,在直角梯形ABB1N中,AN∥BB1,AB⊥AN,CB=BA=AN=$\frac{1}{2}$BB1
(1)求证:BN⊥平面C1B1N;
(2)求二面角C-C1N-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=2sin(ωx+φ)(ω>0,-$\frac{π}{2}$≤φ<$\frac{π}{2}$)的图象关于直线x=$\frac{π}{6}$对称,且图象上相邻最高点的距离为π.
(1)求f(x)的解析式;
(2)将y=f(x)的图象向右平移$\frac{π}{6}$个单位,得到g(x)的图象若关于x的方程g(x)-(2m+1)=0在$[0,\frac{π}{2}]$上有唯一解,求实数m的取值范围.

查看答案和解析>>

同步练习册答案