精英家教网 > 高中数学 > 题目详情
15.如图,已知矩形BB1C1C所在平面与底面ABB1N垂直,在直角梯形ABB1N中,AN∥BB1,AB⊥AN,CB=BA=AN=$\frac{1}{2}$BB1
(1)求证:BN⊥平面C1B1N;
(2)求二面角C-C1N-B的大小.

分析 (1)证明BC⊥平面ABB1N,建立空间坐标系,利用向量证明BN⊥NB1,NB⊥B1C1,故而得出结论;
(2)求出两平面的法向量,计算法向量的夹角即可得出二面角的大小.

解答 (1)证明:∵四边形BB1C1C是矩形,∴BC⊥BB1
∵平面BB1C1C⊥底面ABB1N,平面BB1C1C∩底面ABB1N=BB1,BC?平面BB1C1C,
∴BC⊥平面ABB1N,
以B为原点,以BA,BB1,BC为坐标轴建立空间直角坐标系B-xyz,
设AB=1,则B(0,0,0),N(1,1,0),B1(0,2,0),C1(0,2,1),C(0,0,1)
∴$\overrightarrow{BN}$=(1,1,0),$\overrightarrow{N{B}_{1}}$=(-1,1,0),$\overrightarrow{{B}_{1}{C}_{1}}$=(0,0,1),
∴$\overrightarrow{BN}•\overrightarrow{N{B}_{1}}$=-1+1=0,$\overrightarrow{BN}•\overrightarrow{{B}_{1}{C}_{1}}$=0,
∴BN⊥NB1,BN⊥B1C1,又NB1∩B1C1=B1
∴BN⊥平面C1B1N.
(2)解:$\overrightarrow{N{C}_{1}}$=(-1,1,1),$\overrightarrow{NC}$=(-1,-1,1),$\overrightarrow{C{C}_{1}}$=(0,2,0),
设平面BNC1的法向量为$\overrightarrow{m}$=(x,y,z),则$\overrightarrow{m}•\overrightarrow{BN}=0$,$\overrightarrow{m}•\overrightarrow{N{C}_{1}}$=0,
∴$\left\{\begin{array}{l}{x+y=0}\\{-x+y+z=0}\end{array}\right.$,令x=1得$\overrightarrow{m}$=(1,-1,2),
同理可得平面CNC1的法向量为$\overrightarrow{n}$=(1,0,1),
∴cos<$\overrightarrow{m},\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{\sqrt{3}}{2}$.
∴二面角C-C1N-B的大小为30°.

点评 本题考查了线面垂直的判定,空间向量在立体几何中的应用,空间角的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.某公司有A、B、C、D、E五辆汽车,其中A、B两辆汽车的车牌尾号均为1,C、D两辆汽车的车牌尾号均为2,E车的车牌尾号为6.已知在非限行日,每辆车可能出车或不出车,A、B、E三辆汽车每天出车的概率均为$\frac{2}{3}$,C、D两辆汽车每天出车的概率均为$\frac{1}{2}$,五辆汽车是否出车相互独立,该公司所在地区汽车限行规定如下:
工作日星期一星期二星期三星期四星期五
限行车牌尾号0和51和62和73和84和9
例如,星期一禁止车牌尾号为0和5的车辆通行.
(1)求该公司在星期一至少有2辆汽车出车的概率;
(2)设X表示该公司在星期二和星期三两天出车的车辆数之和,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列命题中,正确的是(  )
A.若a>b,c>d,则ac>bdB.若ac>bc,则a>b
C.若a>b,c>d,则a-c>b-dD.若$\frac{a}{{c}^{2}}$<$\frac{b}{{c}^{2}}$,则a<b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在等差数列{an}中,已知a2=-2,a4=4,则公差等于(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.研究性学习小组要从6名(其中男生4人,女生2人)成员中任意选派3人去参加某次社会调查.
(Ⅰ)在男生甲被选中的情况下,求女生乙也被选中的概率;
(Ⅱ)设所选3人中女生人数为ξ,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=cos($\frac{2π}{3}$x)+(a-1)sin($\frac{π}{3}$x)+a,g(x)=2x-x2,若f[g(x)]≤0对x∈[0,1]恒成立,则实数a的取值范围是(  )(参考公式:cos(2α)=cos2α-sin2α=2cos2α-1=1-2sin2α)
A.(-∞,$\sqrt{3}$-1]B.(-∞,0]C.[0,$\sqrt{3}$-1]D.(-∞,1-$\sqrt{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下面几种推理中是演绎推理的为(  )
A.科学家利用鱼的沉浮原理制造潜艇
B.猜想数列$\frac{1}{1×2}$,$\frac{1}{2×3}$,$\frac{1}{3×4}$,…的通项公式为an=$\frac{1}{n(n+1)}$(n∈N+
C.半径为r的圆的面积S=πr2,则单位圆的面积S=π
D.由平面直角坐标系中圆的方程为(x-a)2+(y-b)2=r2,推测空间直角坐标系中球的方程为(x-a)2+(y-b)2+(z-c)2=r2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知|$\overrightarrow{OA}$|=2,|$\overrightarrow{OB}$|=$\sqrt{3}$,$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,点C在∠AOB内,且∠AOC=60°,设$\overrightarrow{OC}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$(m,n∈R),则$\frac{m}{n}$等于(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.sin300°+tan600°的值是  (  )
A.-$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$+$\sqrt{3}$D.$\frac{1}{2}$+$\sqrt{3}$

查看答案和解析>>

同步练习册答案