精英家教网 > 高中数学 > 题目详情
18.如图,已知正四棱柱(底面为正方形,侧棱与底面垂直)ABCD-A1B1C1D1的底面边长为3,侧棱长为4,连结A1B,过A作AF⊥A1B垂足为F,且AF的延长线交B1B于E.
(Ⅰ)求证:AE⊥D1B;
(Ⅱ)求三棱锥B-AEC的体积.

分析 (Ⅰ)推导出A1D1⊥AE,AE⊥A1B,从而AE⊥平面A1D1B,由此能证明AE⊥D1B.
(Ⅱ)以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,三棱锥B-AEC的体积VB-AEC=VE-ABC,由此能求出结果.

解答 证明:(Ⅰ)∵正四棱柱(底面为正方形,侧棱与底面垂直)
ABCD-A1B1C1D1中,A1D1⊥平面ABB1A1
AE?平面ABB1A1
∴A1D1⊥AE,
∵过A作AF⊥A1B垂足为F,且AF的延长线交B1B于E,∴AE⊥A1B,
∵A1D1∩A1B=A1,∴AE⊥平面A1D1B,
∵D1B?平面A1D1B,∴AE⊥D1B.
解:(Ⅱ)以D为原点,DA为x轴,DC为y轴,
DD1为z轴,建立空间直角坐标系,
则A(3,0,0),B(3,3,0),A1(3,0,4),
设E(3,3,t),
$\overrightarrow{AE}$=(0,3,t),$\overrightarrow{{A}_{1}B}$=(0,3,-4),
∵AE⊥A1B,∴$\overrightarrow{AE}•\overrightarrow{{A}_{1}B}$=9-4t=0,解得t=$\frac{9}{4}$,
∴BE=$\frac{9}{4}$,
∴三棱锥B-AEC的体积:
VB-AEC=VE-ABC=$\frac{1}{3}×BE×{S}_{△ABC}$=$\frac{1}{3}×BE×(\frac{1}{2}×AB×BC)$
=$\frac{1}{3}×\frac{9}{4}×\frac{1}{2}×3×3$=$\frac{27}{8}$.

点评 本题考查线线垂直的证明,考查三棱锥的体积的求法,考查空间中线线、线面、面面间的位置关系,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.若直线ax+y-2=0与圆心为C的圆(x-1)2+(y-a)2=16相交于A,B两点,且$\overrightarrow{CA}•\overrightarrow{CB}=0$,则实数a的值是-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在平面直角坐标系式xOy中,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1(-c,0)、F2(c,0),已知(1,e)和(e,$\frac{\sqrt{3}}{2}$)都在椭圆上,其中e为椭圆的离心率.
(1)求椭圆C的方程;
(2)过点F2的直线l与椭圆C相交于P,Q两点,且$\overrightarrow{P{F}_{2}}$•$\overrightarrow{{F}_{1}Q}$+$\overrightarrow{{F}_{1}{F}_{2}}$•$\overrightarrow{Q{F}_{2}}$=4,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列命题中,正确的是(  )
A.若a>b,c>d,则ac>bdB.若ac>bc,则a>b
C.若a>b,c>d,则a-c>b-dD.若$\frac{a}{{c}^{2}}$<$\frac{b}{{c}^{2}}$,则a<b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,内角A,B,C所对的边分别为a,b,c,b(1-2cosA)=2acosB.
(1)若b=2,求c的值;
(2)若a=1,tanA=2$\sqrt{2}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在等差数列{an}中,已知a2=-2,a4=4,则公差等于(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.研究性学习小组要从6名(其中男生4人,女生2人)成员中任意选派3人去参加某次社会调查.
(Ⅰ)在男生甲被选中的情况下,求女生乙也被选中的概率;
(Ⅱ)设所选3人中女生人数为ξ,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下面几种推理中是演绎推理的为(  )
A.科学家利用鱼的沉浮原理制造潜艇
B.猜想数列$\frac{1}{1×2}$,$\frac{1}{2×3}$,$\frac{1}{3×4}$,…的通项公式为an=$\frac{1}{n(n+1)}$(n∈N+
C.半径为r的圆的面积S=πr2,则单位圆的面积S=π
D.由平面直角坐标系中圆的方程为(x-a)2+(y-b)2=r2,推测空间直角坐标系中球的方程为(x-a)2+(y-b)2+(z-c)2=r2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设函数f(x)=$\frac{\sqrt{3}cosθ}{6}$x3+$\frac{sinθ}{4}$x2+$\frac{1}{tanθ}$,其中θ∈(-$\frac{π}{2}$,$\frac{π}{2}$),则导数f′(1)的取值范围是(  )
A.(-$\frac{1}{2}$,1]B.(-$\frac{1}{2}$,1)C.(-$\frac{1}{2}$,$\frac{1}{2}$)D.(-$\frac{1}{2}$,$\frac{1}{2}$]

查看答案和解析>>

同步练习册答案