精英家教网 > 高中数学 > 题目详情
9.在平面直角坐标系式xOy中,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1(-c,0)、F2(c,0),已知(1,e)和(e,$\frac{\sqrt{3}}{2}$)都在椭圆上,其中e为椭圆的离心率.
(1)求椭圆C的方程;
(2)过点F2的直线l与椭圆C相交于P,Q两点,且$\overrightarrow{P{F}_{2}}$•$\overrightarrow{{F}_{1}Q}$+$\overrightarrow{{F}_{1}{F}_{2}}$•$\overrightarrow{Q{F}_{2}}$=4,求直线l的方程.

分析 (1)根据椭圆的性质和已知(1,e)和(e,$\frac{\sqrt{3}}{2}$)都在椭圆上,列式求解.
(2)设P(x1,y1),Q(x2,y2),由$\overrightarrow{P{F}_{2}}$•$\overrightarrow{{F}_{1}Q}$+$\overrightarrow{{F}_{1}{F}_{2}}$•$\overrightarrow{Q{F}_{2}}$=4,得x1x2+y1y2+x1+x2+1=0,设直线l的方程为x=my+1,由$\left\{\begin{array}{l}{\frac{{x}^{2}}{2}{+y}^{2}=1}\\{x=my+1}\end{array}\right.$,可得(m2+2)y+2my-1=0.x1+x2+x1x2+y1y2+1=2m(y1+y2)+(m2+1)y1y2+4=2m×$\frac{-2m}{{m}^{2}+2}$+(m2+1)×$\frac{-1}{{m}^{2}+2}+4$=0,m=$±\sqrt{7}$.即可求出直线方程.

解答 (1)解:由题设知a2=b2+c2,e=$\frac{c}{a}$,由点(1,e)在椭圆上,得$\frac{1}{{a}^{2}}+\frac{{c}^{2}}{{a}^{2}{b}^{2}}=1$,
,∴b=1,c2=a2-1.
由点(e,$\frac{\sqrt{3}}{2}$)在椭圆上,得$\frac{{e}^{2}}{{a}^{2}}+\frac{3}{4{b}^{2}=1}$,即$\frac{{a}^{2}-1}{{a}^{4}}+\frac{3}{4}=1$,解得a=2.
∴椭圆的方程为:$\frac{{x}^{2}}{2}+{y}^{2}=1$
(2)由(1)得F1(-1,0),F2(1,0),设P(x1,y1),Q(x2,y2),
$\overrightarrow{{PF}_{2}}=(1-{x}_{1},-{y}_{1})$,$\overrightarrow{{F}_{1}Q}=({x}_{2}+1,{y}_{2})$,$\overrightarrow{{F}_{1}{F}_{2}}=(2,0)$,$\overrightarrow{Q{F}_{2}}=(1-{x}_{2},-{y}_{2})$
且$\overrightarrow{P{F}_{2}}$•$\overrightarrow{{F}_{1}Q}$+$\overrightarrow{{F}_{1}{F}_{2}}$•$\overrightarrow{Q{F}_{2}}$=4,∴x1x2+y1y2+x1+x2+1=0
当直线l的斜率为0 时,不符合题意,∴设直线l的方程为x=my+1,
由$\left\{\begin{array}{l}{\frac{{x}^{2}}{2}{+y}^{2}=1}\\{x=my+1}\end{array}\right.$,可得(m2+2)y+2my-1=0.
∴${y}_{1}+{y}_{2}=\frac{-2m}{{m}^{2}+2}$,${y}_{1}{y}_{2}=\frac{-1}{{m}^{2}+2}$
x1+x2+x1x2+y1y2+1=2m(y1+y2)+(m2+1)y1y2+4=2m×$\frac{-2m}{{m}^{2}+2}$+(m2+1)×$\frac{-1}{{m}^{2}+2}+4$=0
m=$±\sqrt{7}$.
∴直线l的方程为:x=$±\sqrt{7}y+1$

点评 本题考查了椭圆的方程,直线与椭圆的位置关系,考查了计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.假设你和同桌玩数字游戏,两人各自在心中想一个整数,分别记为x,y,且x,y∈[1,4].如果满足|x-y|≤1,那么就称你和同桌“心灵感应”,则你和同桌“心灵感应”的概率为(  )
A.$\frac{7}{16}$B.$\frac{5}{8}$C.$\frac{9}{16}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若直线y=k(x+2)上存在点(x,y)∈{(x,y)|x-y≥0,x+y≤1,y≥-1},则实数k的取值区间为[-1,$\frac{1}{5}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某学校有若干学生社团,其中“文学社”、“围棋社”、“书法社”的人数分别为9、18、27.现采用分层抽样的方法从这三个社团中抽取6人外出参加活动.
(1)求应从这三个社团中分别抽取的人数;
(2)将抽取的6人进行编号,编号分别为A1,A2,A3,A4,A5,A6,现从这6人中随机地抽出2人组成活动小组.
①用所给编号列出所有可能的结果;
②设A为事件“编号为A1和A2的2人中恰有1人被抽到”,求事件A发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,某港口一天的水深变化曲线近似满足函数y=Asin$\frac{π}{6}$t+k,则水深从最小值变化到最大值至少需要(  )
A.6hB.8hC.12hD.24h

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中,内角A,B,C所对的边分别是a,b,c.已知2a=b+c,sin2A=sinBsinC.试判断三角形的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.为了普及环保知识,增强环保意识,某大学从大学理工类专业的A班和文史专业的B班各抽取20名同学参加环保知识测试,统计得到成绩与专业的列联表:
优秀非优秀总计
A班14620
B班71320
总计211940
附:参考公式及数据:
①K2统计量:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d);
②独立性检验的临界值表:
P(K≥k00.0500.010
k03.8416.635
(  )
A.有99%的把握认为环保知识测试成绩与专业有关
B.有99%的把握认为环保知识测试成绩与专业无关
C.有95%的把握认为环保知识测试成绩与专业无关
D.有95%的把握认为环保知识测试成绩与专业有关

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,已知正四棱柱(底面为正方形,侧棱与底面垂直)ABCD-A1B1C1D1的底面边长为3,侧棱长为4,连结A1B,过A作AF⊥A1B垂足为F,且AF的延长线交B1B于E.
(Ⅰ)求证:AE⊥D1B;
(Ⅱ)求三棱锥B-AEC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.为了对2016年某校中考成绩进行分析,在60分以上的全体同学中随机抽取8位,他们的数学、物理、化学分数(折算成百分制)事实上对应如表:
学生编号12345678
数学分数x6065707580859095
物理分数y7277808488909395
化学分数z6772768084879092
(1)若规定80分以上为优秀,请填写如下2×2列联表,问是否有90%的把握认为是否优秀与科目有关;
  优秀 不优秀 合计
 数学   
 物理   
 合计   
(2)用变量y与x,z与x的相关系数说明物理与数学、化学与数学的相关程度;
(3)求y与x,z与x的线性回归方程(系数精确到0,01),当某位同学的数学成绩为50分时,估计其物理、化学两科的成绩.
参考公式:相关系数r=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}•\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$,
回归直线方程是:$\widehat{y}$=bx+a,其中b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,a=$\overline{y}$-b$\overline{x}$,
参考数据:$\overline{x}$=77.5,$\overline{y}$=85,$\overline{z}$=81,$\sum_{i=1}^{8}$(xi-$\overline{x}$)2≈1050,$\sum_{i=1}^{8}$(yi-$\overline{y}$)2≈456,$\sum_{i=1}^{8}$(zi-$\overline{z}$)2≈550,≈688,$\sum_{i=1}^{8}$(xi-$\overline{x}$)(zi-$\overline{z}$)≈755,$\sqrt{1050}$≈32.4,$\sqrt{456}$≈21.4,$\sqrt{550}$≈23.5.

查看答案和解析>>

同步练习册答案