1£®ÎªÁËÆÕ¼°»·±£ÖªÊ¶£¬ÔöÇ¿»·±£Òâʶ£¬Ä³´óѧ´Ó´óѧÀí¹¤ÀàרҵµÄA°àºÍÎÄʷרҵµÄB°à¸÷³éÈ¡20Ãûͬѧ²Î¼Ó»·±£ÖªÊ¶²âÊÔ£¬Í³¼ÆµÃµ½³É¼¨ÓëרҵµÄÁÐÁª±í£º
ÓÅÐã·ÇÓÅÐã×ܼÆ
A°à14620
B°à71320
×ܼÆ211940
¸½£º²Î¿¼¹«Ê½¼°Êý¾Ý£º
¢ÙK2ͳ¼ÆÁ¿£º${K^2}=\frac{{n{{£¨ad-bc£©}^2}}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£¨ÆäÖÐn=a+b+c+d£©£»
¢Ú¶ÀÁ¢ÐÔ¼ìÑéµÄÁÙ½çÖµ±í£º
P£¨K¡Ýk0£©0.0500.010
k03.8416.635
£¨¡¡¡¡£©
A£®ÓÐ99%µÄ°ÑÎÕÈÏΪ»·±£ÖªÊ¶²âÊԳɼ¨ÓëרҵÓйØ
B£®ÓÐ99%µÄ°ÑÎÕÈÏΪ»·±£ÖªÊ¶²âÊԳɼ¨ÓëרҵÎÞ¹Ø
C£®ÓÐ95%µÄ°ÑÎÕÈÏΪ»·±£ÖªÊ¶²âÊԳɼ¨ÓëרҵÎÞ¹Ø
D£®ÓÐ95%µÄ°ÑÎÕÈÏΪ»·±£ÖªÊ¶²âÊԳɼ¨ÓëרҵÓйØ

·ÖÎö ¸ù¾Ý±íÖÐÊý¾Ý¼ÆËãͳ¼ÆÁ¿K2£¬²Î¿¼ÁÙ½çÊý¾ÝµÃ³ö½áÂÛ£®

½â´ð ½â£º¸ù¾Ý±íÖÐÊý¾Ý£¬¼ÆËãͳ¼ÆÁ¿
K2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$=$\frac{40{¡Á£¨14¡Á13-7¡Á6£©}^{2}}{20¡Á20¡Á21¡Á19}$¡Ö4.912£¾3.841£¬
²Î¿¼ÁÙ½çÊý¾ÝÖª£¬ÓÐ95%µÄ°ÑÎÕÈÏΪ»·±£ÖªÊ¶²âÊԳɼ¨ÓëרҵÓйأ®
¹ÊÑ¡£ºD£®

µãÆÀ ±¾Ì⿼²éÁ˶ÀÁ¢ÐÔ¼ìÑéµÄÓ¦ÓÃÎÊÌ⣬ÊÇ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®¸ø³öÏÂÁеÈʽ£º$\sqrt{2}=2cos\frac{¦Ð}{4}$£¬$\sqrt{2+\sqrt{2}}=2cos\frac{¦Ð}{8}$£¬$\sqrt{2+\sqrt{2+\sqrt{2}}}=2cos\frac{¦Ð}{16}$£¬¡­Çë´ÓÖйéÄɳöµÚn£¨n¡ÊN*£©¸öµÈʽ£º$\underbrace{\sqrt{2+\sqrt{2+¡­+\sqrt{2}}}}_{n¸ö¸ùºÅ}$=$2cos\frac{¦Ð}{{{2^{n+1}}}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®Ä³ËÄÀą̂µÄÈýÊÓͼÈçͼËùʾ£¬Ôò¸ÃËÄÀą̂µÄÌå»ýÊÇ£¨¡¡¡¡£©
A£®7B£®6C£®5D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵʽxOyÖУ¬ÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¨-c£¬0£©¡¢F2£¨c£¬0£©£¬ÒÑÖª£¨1£¬e£©ºÍ£¨e£¬$\frac{\sqrt{3}}{2}$£©¶¼ÔÚÍÖÔ²ÉÏ£¬ÆäÖÐeΪÍÖÔ²µÄÀëÐÄÂÊ£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©¹ýµãF2µÄÖ±ÏßlÓëÍÖÔ²CÏཻÓÚP£¬QÁ½µã£¬ÇÒ$\overrightarrow{P{F}_{2}}$•$\overrightarrow{{F}_{1}Q}$+$\overrightarrow{{F}_{1}{F}_{2}}$•$\overrightarrow{Q{F}_{2}}$=4£¬ÇóÖ±ÏßlµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÔÚ¡÷ABCÖУ¬a£¬b£¬c·Ö±ðΪA¡¢B¡¢CµÄ¶Ô±ß£¬ÇÒÂú×ã2£¨a2-b2£©=2accosB+bc
£¨1£©ÇóA
£¨2£©DΪ±ßBCÉÏÒ»µã£¬CD=3BD£¬¡ÏDAC=90¡ã£¬ÇótanB£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÏÂÁÐÃüÌâÖУ¬ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®Èôa£¾b£¬c£¾d£¬Ôòac£¾bdB£®Èôac£¾bc£¬Ôòa£¾b
C£®Èôa£¾b£¬c£¾d£¬Ôòa-c£¾b-dD£®Èô$\frac{a}{{c}^{2}}$£¼$\frac{b}{{c}^{2}}$£¬Ôòa£¼b

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÔÚ¡÷ABCÖУ¬ÄÚ½ÇA£¬B£¬CËù¶ÔµÄ±ß·Ö±ðΪa£¬b£¬c£¬b£¨1-2cosA£©=2acosB£®
£¨1£©Èôb=2£¬ÇócµÄÖµ£»
£¨2£©Èôa=1£¬tanA=2$\sqrt{2}$£¬Çó¡÷ABCµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®Ñо¿ÐÔѧϰС×éÒª´Ó6Ãû£¨ÆäÖÐÄÐÉú4ÈË£¬Å®Éú2ÈË£©³ÉÔ±ÖÐÈÎÒâÑ¡ÅÉ3ÈËÈ¥²Î¼Óij´ÎÉç»áµ÷²é£®
£¨¢ñ£©ÔÚÄÐÉú¼×±»Ñ¡ÖеÄÇé¿öÏ£¬ÇóÅ®ÉúÒÒÒ²±»Ñ¡ÖеĸÅÂÊ£»
£¨¢ò£©ÉèËùÑ¡3ÈËÖÐÅ®ÉúÈËÊýΪ¦Î£¬Çó¦ÎµÄ·Ö²¼Áм°ÊýѧÆÚÍû£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÏÂÁк¯ÊýÖУ¬ÖÜÆÚΪ¦Ð£¬ÇÒÒÔÖ±Ïßx=$\frac{¦Ð}{3}$Ϊ¶Ô³ÆÖáµÄÊÇ£¨¡¡¡¡£©
A£®$y=sin£¨\frac{x}{2}+\frac{¦Ð}{3}£©$B£®$y=sin£¨2x-\frac{¦Ð}{6}£©$C£®$y=cos£¨2x-\frac{¦Ð}{6}£©$D£®$y=tan£¨x+\frac{¦Ð}{6}£©$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸