精英家教网 > 高中数学 > 题目详情
16.在△ABC中,a,b,c分别为A、B、C的对边,且满足2(a2-b2)=2accosB+bc
(1)求A
(2)D为边BC上一点,CD=3BD,∠DAC=90°,求tanB.

分析 (1)将2(a2-b2)=2accosB+bc化解结合余弦定理可得答案.
(2)因为∠DAC=$\frac{π}{2}$,所以AD=CD•sinC,∠DAB=$\frac{π}{6}$.利用正弦定理即可求解.

解答 解:(1)由题意2accosB=a2+c2-b2
∴2(a2-b2)=a2+c2-b2+bc.
整理得a2=b2+c2+bc,
由余弦定理:a2=b2+c2-2bccosA
可得:bc=-2bccosA
∴cosA=-$\frac{1}{2}$,
∵0<A<π
∴A=$\frac{2π}{3}$.
(Ⅱ)∵∠DAC=$\frac{π}{2}$,
∴AD=CD•sinC,∠DAB=$\frac{π}{6}$.
在△ABD中,有$\frac{AD}{sinB}=\frac{BD}{sin∠DAB}$,
又∵CD=3BD,
∴3sinC=2sinB,
由C=$\frac{π}{3}$-B,得$\frac{{3\sqrt{3}}}{2}$cosB-$\frac{3}{2}$sinB=2sinB,
整理得:tanB=$\frac{{3\sqrt{3}}}{7}$.

点评 本题考查了正弦、余弦定理的灵活运用和计算能力.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.设集合A={x|(x+4)(x-4)>0},B={x|-2<x≤6},则A∩B等于(  )
A.(-2,4)B.(4,-2)C.(-4,6)D.(4,6]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合A={x|y=log2(x-1)},集合B={x|(x+1)(x-2)≤0},则A∪B=(  )
A.[-1,+∞)B.(1,2]C.(1,+∞)D.[-1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,某港口一天的水深变化曲线近似满足函数y=Asin$\frac{π}{6}$t+k,则水深从最小值变化到最大值至少需要(  )
A.6hB.8hC.12hD.24h

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点分别为F1,F2,P为双曲线右支上一点(异于右顶点),△PF1F2的内切圆与x轴切于点(2,0),过F2作直线l与双曲线交于A,B两点,若使|AB|=b2的直线l恰有三条,则双曲线离心率的取值范围是(  )
A.(1,$\sqrt{2}$)B.(1,2)C.($\sqrt{2}$,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.为了普及环保知识,增强环保意识,某大学从大学理工类专业的A班和文史专业的B班各抽取20名同学参加环保知识测试,统计得到成绩与专业的列联表:
优秀非优秀总计
A班14620
B班71320
总计211940
附:参考公式及数据:
①K2统计量:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d);
②独立性检验的临界值表:
P(K≥k00.0500.010
k03.8416.635
(  )
A.有99%的把握认为环保知识测试成绩与专业有关
B.有99%的把握认为环保知识测试成绩与专业无关
C.有95%的把握认为环保知识测试成绩与专业无关
D.有95%的把握认为环保知识测试成绩与专业有关

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知正四棱台上、下底面的边长分别为4、10,侧棱长为6.
(1)求正四棱台的表面积;
(2)求正四棱台的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知△ABC三个内角A、B、C所对的边分别为a、b、c,且3sinA=a,sinB=$\frac{3}{4}$,则b等于(  )
A.$\frac{9}{4}$B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设两个非零向量$\overrightarrow{a}$,$\overrightarrow{b}$不共线.
(1)如$\overrightarrow{AB}$=$\overrightarrow{a}$+2$\overrightarrow{b}$,$\overrightarrow{BC}$=-3($\overrightarrow{a}$-$\overrightarrow{b}$),$\overrightarrow{CD}$=-2$\overrightarrow{a}$-13$\overrightarrow{b}$,求证:A,B,D三点共线.
(2)试确定k的值,使k$\overrightarrow{a}$+12$\overrightarrow{b}$和3$\overrightarrow{a}$+k$\overrightarrow{b}$共线.

查看答案和解析>>

同步练习册答案