精英家教网 > 高中数学 > 题目详情
已知f(x)=lnx-ax2-bx。
(Ⅰ)若a=-1,函数f(x)在其定义域内是增函数,求b的取值范围;
(Ⅱ)当a=1,b=-1时,证明:函数f(x)只有一个零点;
(Ⅲ)若f(x)的图象与x轴交于A(x1,0),B(x2,0)(x1<x2)两点,AB中点为C(x0,0),求证:f'(x0)<0。
解:(1)依题意:f(x)=lnx+x2-bx
∵f(x)在(0,+∞)上递增
对x∈(0,+∞)恒成立
,对x∈(0,+∞)恒成立
∴只需
∵x>0

当且仅当时取“=”

∴b的取值范围为
(2)当a=1,b=-1时,f(x)=lnx-x2+x,其定义域是(0,+∞),


∵x>0,
∴当0<x<1时,f'(x)>0
当x>1时,f'(x)<0
∴函数f(x)在区间(0,1)上单调递增,在区间(1,+∞)上单调递减,
∴当x=1时,函数f(x)取得最大值,
其值为f(1)=ln1-12+1=0,
当x≠1时,f(x)<f(1),即f(x)<0,
∴函数f(x)只有一个零点。
(3)由已知得
两式相减得=a(x1+x2)(x1-x2)+b(x1-x2(x1-x2)[a(x1+x2)+b]
及2x0=x1+x2






∴φ(t)在(0,1)上递减,
∴φ(t)>φ(1)=0,
∵x1<x2
∴f'(x0)<0。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在(0,+∞)上的三个函数f(x)、g(x)、h(x),已知f(x)=lnx,g(x)=x2-af(x),h(x)=x-a
x
,且g(x)在x=1处取得极值.
(1)求a的值及h(x)的单调区间;
(2)求证:当1<x<e2时,恒有x<
2+f(x)
2-f(x)

(3)把h(x)对应的曲线C1向上平移6个单位后得到曲线C2,求C2与g(x)对应曲线C3的交点的个数,并说明道理.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=lnx,g(x)=x+
a
x
(a∈R).
(1)求f(x)-g(x)的单调区间;
(2)若x≥1时,f(x)≤g(x)恒成立,求实数a的取值范围;
(3)当n∈N*,n≥2时,证明:
ln2
3
ln3
4
•…•
lnn
n+1
1
n

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=lnx-
a
x

(Ⅰ)当a>0时,判断f(x)在定义域上的单调性;
(Ⅱ)若f(x)<x2在(1,+∞)上恒成立,试求a的取值范围;
(Ⅲ)若f(x)在[1,e]上的最小值为
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=lnx,g(x)=x2-x,
(1)求函数h(x)=f(x)-g(x)的单调增区间;
(2)当x∈[-2,0]时,g(x)≤2c2-c-x3恒成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=lnx+cosx,则f(x)在x=
π2
处的导数值为
 

查看答案和解析>>

同步练习册答案