【题目】已知函数
.
(1)讨论
的单调性;
(2)当
时,
,求
的取值范围.
【答案】(1)见解析;(2)
.
【解析】
(1)求出函数
的导数,分
和
两种情况讨论,分析导数
的符号变化,即可求出函数
的单调区间;
(2)问题变形为
,令
,由题意得出
,根据函数
的单调性确定
的范围即可.
(1)
,定义域为
且
.
①当
时,则
,则函数
在
上单调递增;
②当
时,由
,得
,得
.
当
时,
,函数
单调递减;
当
时,
,函数
单调递增.
此时,函数
的单调减区间为
,单调增区间为
.
综上所述,当
时,函数
的单调递增区间为
;
当
时,函数
的单调减区间为
,单调增区间为
;
(2)
变形为
,
令
,定义域为
,且
,
.
①当
时,对任意的
,
,函数
在区间
上为增函数,
此时,
,合乎题意;
②当
时,则函数
在
上的单调减区间为
,单调增区间为
.
(i)当
时,即当
时,则函数
在区间
上为增函数,
此时
,则函数
在区间
上为增函数.
此时,
,合乎题意;
(ii)当
时,即当
时,则函数
在区间
上单调递减,在区间
上单调递增,所以,
,
又
,所以,函数
在区间
上单调递减,
当
时,
,不合乎题意.
综上所述,实数
的取值范围是
.
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,椭圆上的点到右焦点
的距离的最大值为3.
(1)求椭圆
的方程;
(2)若过椭圆
的右焦点
作倾斜角不为零的直线
与椭圆
交于两点
,设线段
的垂直平分线在
轴上的截距为
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
的参数方程为
(
,
为参数),以坐标原点
为极点,
轴正半轴为极轴建立极坐标系,直线
的坐标方程为
,若直线
与曲线
相切.
(1)求曲线
的极坐标方程;
(2)在曲线
上取两点
、
于原点
构成
,且满足
,求面积
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市为了引导居民合理用水,居民生活用水实行二级阶梯式水价计量方法,具体如下;第一阶梯,每户居民每月用水量不超过12吨,价格为4元/吨;第二阶梯,每户居民用水量超过12吨,超过部分的价格为8元/吨,为了了解全是居民月用水量的分布情况,通过抽样获得了100户居民的月用水量(单位:吨),将数据按照
(全市居民月用水量均不超过16吨)分成8组,制成了如图1所示的频率分布直方图.
![]()
![]()
(Ⅰ)求频率分布直方图中字母
的值,并求该组的频率;
(Ⅱ)通过频率分布直方图,估计该市居民每月的用水量的中位数
的值(保留两位小数);
(Ⅲ)如图2是该市居民张某2016年1~6月份的月用水费
(元)与月份
的散点图,其拟合的线性回归方程是
若张某2016年1~7月份水费总支出为312元,试估计张某7月份的用水吨数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
的坐标分别为
,
.三角形
的两条边
,
所在直线的斜率之积是
.
(1)求点
的轨迹方程;
(2)设直线
方程为
,直线
方程为
,直线
交
于
,点
,
关于
轴对称,直线
与
轴相交于点
.若
的面积为
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将所有平面向量组成的集合记作
,
是从
到
的对应关系,记作
或
,其中
、
、
、
都是实数,定义对应关系
的模为:在
的条件下
的最大值记作
,若存在非零向量
,及实数
使得
,则称
为
的一个特殊值;
(1)若
,求
;
(2)如果
,计算
的特征值,并求相应的
;
(3)若
,要使
有唯一的特征值,实数
、
、
、
应满足什么条件?试找出一个对应关系
,同时满足以下两个条件:①有唯一的特征值
,②
,并验证
满足这两个条件.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】李克强总理在2018年政府工作报告指出,要加快建设创新型国家,把握世界新一轮科技革命和产业变革大势,深入实施创新驱动发展战略,不断增强经济创新力和竞争力.某手机生产企业积极响应政府号召,大力研发新产品,争创世界名牌.为了对研发的一批最新款手机进行合理定价,将该款手机按事先拟定的价格进行试销,得到一组销售数据
,如表所示:
单价 |
|
|
|
|
|
|
销量 |
|
|
|
|
|
|
已知
.
(1)若变量
具有线性相关关系,求产品销量
(百件)关于试销单价
(千元)的线性回归方程
;
(2)用(1)中所求的线性回归方程得到与
对应的产品销量的估计值
.当销售数据
对应的残差的绝对值
时,则将销售数据
称为一个“好数据”.现从
个销售数据中任取
个子,求“好数据”个数
的分布列和数学期望
.
(参考公式:线性回归方程中
的估计值分别为
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com