精英家教网 > 高中数学 > 题目详情
16.已知变量x、y,满足$\left\{\begin{array}{l}{2x-y≤0}\\{x-2y+3≥0}\\{x≥0}\end{array}\right.$,则z=log2(2x+y+4)的最大值为(  )
A.1B.2C.3D.4

分析 画出可行域的范围,令m=2x+y,由对数函数的性质可知,z=log2(2x+y+4)是增函数,只需求解m的最大值可得Z的最大值.

解答 解:如图,画出可行域为△ABO的内部(包括边界),其中A(1,2);
.令m=2x+y,可见当$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$时,m取到最大值是4,
于是Z的最大值是Z=log2(4+4)=3,
故选C.

点评 本题主要考查了学生作图和数形结合的能力.对数的性质的运用.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知tan(x+$\frac{π}{4}$)=3,则sinxcosx的值是$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某校高三(1)班全体女生的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如图所示,据此解答如下问题:
(1)求分数在[80,90)内的女生人数,并计算频率分布直方图中[80,90)对应的矩形的高;
(2)以这个班的样本数据来估计全校的总体数据,若从全校高三女生中任选三人,设X表示数学成绩不低于80分的学生人数,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}的前n项和为Sn,且3Sn=2×4n-2,n∈N*
(I)求数列{an}的通项公式an
(II)设数列{bn}满足bn=log2an,求Tn=$\frac{1}{{b}_{1}{b}_{2}}$+$\frac{1}{{b}_{2}{b}_{3}}$+…+$\frac{1}{{b}_{n}{b}_{n+1}}$的表达式(用含n的代数式表示).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知x、y满足$\left\{\begin{array}{l}{|x|≤1}\\{|x-y|≤1}\end{array}\right.$,则z=x+y+1的最大值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.为响应阳光体育运动的号召,某县中学生足球活动正如火如荼的开展,该县为了解本县中学生的足球运动状况,根据性别采取分层抽样的方法从全县24000名中学生(其中男生14000人,女生10000人)中抽取120名,统计他们平均每天足球运动的时间,如表:(平均每天足球运动的时间单位为小时,该县中学生平均每天足球运动的时间范围是[0,3])
男生平均每天足球运动的时间分布情况:
平均每天足球运动的时间[0,0.5)[0.5,1)[1,1.5)[1.5,2)[2,2.5)[2.5,3]
人数23282210x
女生平均每天足球运动的时间分布情况:
平均每天足球运动的时间[0,0.5)[0.5,1)[1,1.5)[1.5,2)[2,2.5)[2.5,3]
人数51218103y
(Ⅰ)请根据样本估算该校男生平均每天足球运动的时间(结果精确到0.1);
(Ⅱ)若称平均每天足球运动的时间不少于2小时的学生为“足球健将”.低于2小时的学生为“非足球健将”.
①请根据上述表格中的统计数据填写下面2×2列联表,并通过计算判断,能否有90%的把握认为是否为“足球健将”与性别有关?
足球健将非足球健将总  计
男  生
女  生
总  计
②若在足球活动时间不足1小时的男生中抽取2名代表了解情况,求这2名代表都是足球运动时间不足半小时的概率.
参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
P(K2>k00.500.400.250.150.100.050.0250.010
  k00.4550.7081.3232.0722.7063.8415.0246.635

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图,圆锥的高$PO=\sqrt{2}$,底面⊙O的直径AB=2,C是圆上一点,且∠CAB=30°,D为AC的中点,则直线OC和平面PAC所成角的正弦值为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{2}}}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.给出下列函数①y=xcosx②y=sin2x③y=|x2-x|④y=ex-e-x,其中是奇函数的是(  )
A.①②B.①④C.②④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.a=${∫}_{0}^{\frac{π}{2}}$(-cosx)dx,则(ax+$\frac{1}{2ax}$)9展开式中,x3项的系数为(  )
A.-$\frac{21}{2}$B.-$\frac{63}{8}$C.$\frac{63}{8}$D.$\frac{63}{16}$

查看答案和解析>>

同步练习册答案