分析 (1)要证AE⊥平面BCE,只需证明AE垂直平面BCE内的两条相交直线BF、BC即可;
(2)连接AC、BD交于G,连接FG,说明∠FGB为二面角B-AC-E的平面角,然后求二面角B-AC-E的大小;
(3)利用VD-ACE=VE-ACD,求点D到平面ACE的距离,也可以利用空间直角坐标系,向量的数量积,证明垂直,求出向量的模.
解答 法一、(1)证明:∵BF⊥平面ACE,∴BF⊥AE,![]()
∵二面角D-AB-E为直二面角,
∴平面ABCD⊥平面ABE,
又BC⊥AB,∴BC⊥平面ABE,则BC⊥AE,
又BF?平面BCE,BF∩BC=B,
∴AE⊥平面BCE;
(2)解:连接AC、BD交于G,连接FG,
∵ABCD为正方形,∴BD⊥AC,
∵BF⊥平面ACE,BG⊥AC,∴AC⊥平面BFG,
∴FG⊥AC,即∠FGB为二面角B-AC-E的平面角,
由(1)可知,AE⊥平面BCE,∴AE⊥EB,
又AE=EB,AB=2,AE=BE=$\sqrt{2}$,
在直角三角形BCE中,CE=$\sqrt{B{C}^{2}+B{E}^{2}}$=$\sqrt{6}$,BF=$\frac{BC•BE}{CE}$=$\frac{2\sqrt{2}}{\sqrt{6}}=\frac{2\sqrt{3}}{3}$,
在正方形中,BG=$\sqrt{2}$,在直角三角形BFG中,sin∠FGB=$\frac{BF}{BG}=\frac{\frac{2\sqrt{3}}{3}}{\sqrt{2}}=\frac{\sqrt{6}}{3}$;
(3)由(2)可知,在正方形ABCD中,BG=DG,D到平面ACE的距离等于B到平面ACE的距离,
BF⊥平面ACE,线段BF的长度就是点B到平面ACE的距离,即为D到平面ACE的距离所以D到平面的距离为$\frac{2\sqrt{3}}{3}$.
法二、
(1)证明:同法一;![]()
(2)解:以线段AB的中点为原点O,OE所在直线为x轴,AB所在直线为y轴,
过O点平行于AD的直线为z轴,建立空间直角坐标系O-xyz,如图.
∵AE⊥面BCE,BE?面BCE,∴AE⊥BE,
在Rt△AEB中,AB=2,O为AB的中点,
∴OE=1.∴A(0,-1,0),E(1,0,0),C(0,1,2),
$\overrightarrow{AE}$=(1,1,0),$\overrightarrow{AC}$=(0,2,2).
设平面AEC的一个法向量为$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AE}=x+y=0}\\{\overrightarrow{n}•\overrightarrow{AC}=2y+2z=0}\end{array}\right.$,令x=1,得$\overrightarrow{n}$=(1,-1,1)是平面AEC的一个法向量.
又平面BAC的一个法向量为$\overrightarrow{m}$=(1,0,0),
∴cos<$\overrightarrow{m},\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}$.
∴二面角B-AC-E的正弦值为$\frac{\sqrt{6}}{3}$;
(3)解:∵AD∥z轴,AD=2,∴$\overrightarrow{AD}$=(0,0,2),
∴点D到平面ACE的距离d=|$\overrightarrow{AD}$|•|cos<$\overrightarrow{AD},\overrightarrow{n}$>=$\frac{|\overrightarrow{AD}•\overrightarrow{n}|}{|\overrightarrow{n}|}$=$\frac{2}{\sqrt{3}}=\frac{2\sqrt{3}}{3}$.
点评 本题考查直线与平面垂直的判定,二面角的求法,考查空间想象能力,逻辑思维能力,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | $\frac{1}{2}$ | C. | 1 | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $y=\frac{1}{e}x-\frac{1}{2}$ | B. | $y=ex-\frac{1}{2}$ | C. | $y=-\frac{1}{e}x+\frac{1}{2}$ | D. | $y=ex+\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a>b>c | B. | a>c>b | C. | b>a>c | D. | c>a>b |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4+4$\sqrt{2}$ | B. | 8+4$\sqrt{2}$ | C. | 8+2$\sqrt{3}$ | D. | 8+4$\sqrt{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com