精英家教网 > 高中数学 > 题目详情
19.如图,在直二面角D-AB-E中,四边形ABCD是边长为2的正方形,AE=EB,点F在CE上,且BF⊥平面ACE;
(1)求证:AE⊥平面BCE;
(2)求二面角B-AC-E的正弦值;
(3)求点D到平面ACE的距离.

分析 (1)要证AE⊥平面BCE,只需证明AE垂直平面BCE内的两条相交直线BF、BC即可;
(2)连接AC、BD交于G,连接FG,说明∠FGB为二面角B-AC-E的平面角,然后求二面角B-AC-E的大小;
(3)利用VD-ACE=VE-ACD,求点D到平面ACE的距离,也可以利用空间直角坐标系,向量的数量积,证明垂直,求出向量的模.

解答 法一、(1)证明:∵BF⊥平面ACE,∴BF⊥AE,
∵二面角D-AB-E为直二面角,
∴平面ABCD⊥平面ABE,
又BC⊥AB,∴BC⊥平面ABE,则BC⊥AE,
又BF?平面BCE,BF∩BC=B,
∴AE⊥平面BCE;
(2)解:连接AC、BD交于G,连接FG,
∵ABCD为正方形,∴BD⊥AC,
∵BF⊥平面ACE,BG⊥AC,∴AC⊥平面BFG,
∴FG⊥AC,即∠FGB为二面角B-AC-E的平面角,
由(1)可知,AE⊥平面BCE,∴AE⊥EB,
又AE=EB,AB=2,AE=BE=$\sqrt{2}$,
在直角三角形BCE中,CE=$\sqrt{B{C}^{2}+B{E}^{2}}$=$\sqrt{6}$,BF=$\frac{BC•BE}{CE}$=$\frac{2\sqrt{2}}{\sqrt{6}}=\frac{2\sqrt{3}}{3}$,
在正方形中,BG=$\sqrt{2}$,在直角三角形BFG中,sin∠FGB=$\frac{BF}{BG}=\frac{\frac{2\sqrt{3}}{3}}{\sqrt{2}}=\frac{\sqrt{6}}{3}$;
(3)由(2)可知,在正方形ABCD中,BG=DG,D到平面ACE的距离等于B到平面ACE的距离,
BF⊥平面ACE,线段BF的长度就是点B到平面ACE的距离,即为D到平面ACE的距离所以D到平面的距离为$\frac{2\sqrt{3}}{3}$.
法二、
(1)证明:同法一;
(2)解:以线段AB的中点为原点O,OE所在直线为x轴,AB所在直线为y轴,
过O点平行于AD的直线为z轴,建立空间直角坐标系O-xyz,如图.
∵AE⊥面BCE,BE?面BCE,∴AE⊥BE,
在Rt△AEB中,AB=2,O为AB的中点,
∴OE=1.∴A(0,-1,0),E(1,0,0),C(0,1,2),
$\overrightarrow{AE}$=(1,1,0),$\overrightarrow{AC}$=(0,2,2).
设平面AEC的一个法向量为$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AE}=x+y=0}\\{\overrightarrow{n}•\overrightarrow{AC}=2y+2z=0}\end{array}\right.$,令x=1,得$\overrightarrow{n}$=(1,-1,1)是平面AEC的一个法向量.
又平面BAC的一个法向量为$\overrightarrow{m}$=(1,0,0),
∴cos<$\overrightarrow{m},\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}$.
∴二面角B-AC-E的正弦值为$\frac{\sqrt{6}}{3}$;
(3)解:∵AD∥z轴,AD=2,∴$\overrightarrow{AD}$=(0,0,2),
∴点D到平面ACE的距离d=|$\overrightarrow{AD}$|•|cos<$\overrightarrow{AD},\overrightarrow{n}$>=$\frac{|\overrightarrow{AD}•\overrightarrow{n}|}{|\overrightarrow{n}|}$=$\frac{2}{\sqrt{3}}=\frac{2\sqrt{3}}{3}$.

点评 本题考查直线与平面垂直的判定,二面角的求法,考查空间想象能力,逻辑思维能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知f(x)=$\left\{\begin{array}{l}{cosπx,(x<1)}\\{f(x-1),(x≥1)}\end{array}\right.$,求$f({\frac{1}{3}})+f({\frac{4}{3}})$的值(  )
A.0B.$\frac{1}{2}$C.1D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知$|\overrightarrow a|=5$,$|\overrightarrow b|=3$,且$\overrightarrow a•\overrightarrow b=-9$,则$\overrightarrow a$在$\overrightarrow b$上的射影的数量为-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.执行如图所示的程序框图,如果输出的$S=\frac{7}{15}$,则输入的n(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设函数$f(x)=\frac{f'(1)}{e}•{e^x}-f(0)x+\frac{1}{2}{x^2}$,则曲线f(x)在点(1,f(1))处切线方程为(  )
A.$y=\frac{1}{e}x-\frac{1}{2}$B.$y=ex-\frac{1}{2}$C.$y=-\frac{1}{e}x+\frac{1}{2}$D.$y=ex+\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知p:实数x满足(x-a)(x-3a)<0,其中a>0;q:实数x满足$\frac{x-3}{x-2}≤0$.
(1)若a=1,且p,q均正确,求实数x的取值范围;
(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设a=2,b=lg9,c=2sin$\frac{9π}{5}$,则a,b,c的大小关系为(  )
A.a>b>cB.a>c>bC.b>a>cD.c>a>b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=Asin(ωx+φ)+B (A>0,ω>0,|φ|<$\frac{π}{2}$)的最大值为2$\sqrt{2}$,最小值为-$\sqrt{2}$,周期为π,且图象过(0,-$\frac{\sqrt{2}}{4}$).
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知某个几何体的三视图如图所示,图中每个小正方形的边长为1,则该几何体的表面积为(  )
A.4+4$\sqrt{2}$B.8+4$\sqrt{2}$C.8+2$\sqrt{3}$D.8+4$\sqrt{3}$

查看答案和解析>>

同步练习册答案