精英家教网 > 高中数学 > 题目详情
已知f(x)=ax-x3(x∈R)在区间(0, 
2
2
]
内是增函数.
(Ⅰ) 求a的取值范围;
(Ⅱ) 若f(x)的极小值为-2,求a的值.
(Ⅰ)f'(x)=a-3x2,(1分)
依题意,当x∈(0, 
2
2
]
时,f'(x)≥0,即a-3x2≥0成立,(3分)
a≥3×(
2
2
)2=
3
2
,故所求a的范围是[
3
2
,+∞)
.(6分)
(Ⅱ)令f'(x)=0,即a-3x2=0,得x=±
a
3
.由(Ⅰ)知,a≥
3
2

x<
a
3
时,f'(x)>0;当x>
a
3
时,f'(x)<0.
所以,当x=
a
3
时,f(x)取极大值.
x<-
a
3
时,f'(x)<0; 当x>-
a
3
时,f'(x)>0.
所以,当x=-
a
3
时,f(x)取极小值.(10分)
于是,f(-
a
3
)=-2
,即a(-
a
3
)-(-
a
3
)3=-2
,解得a=3.   (12分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=ax+a-x(a>0且a≠1),
(1)证明函数f ( x )的图象关于y轴对称;
(2)判断f(x)在(0,+∞)上的单调性,并用定义加以证明;
(3)当x∈[1,2]时函数f (x )的最大值为
103
,求此时a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax+b(a>0且a≠1,b为常数)的图象经过点(1,1)且0<f(0)<1,记m=
1
2
[f-1(x1)+f-1(x2)]
n=f-1(
x1+x2
2
)
(x1、x2是两个不相等的正实数),试比较m、n的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知f(x)=ax+a-x,若f(1)=3,,求f(2)的值.
(2)设函数f(x)=log3(ax-bx),且f(1)=1,f(2)=log312.求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax(a>1),g(x)=bx(b>1),当f(x1)=g(x2)=2时,有x1>x2,则a,b的大小关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•新疆模拟)已知f(x)=ax-lnx,x∈(0,e],g(x)=
lnx
x
,其中e是自然对数的底,a∈R.
(Ⅰ)a=1时,求f(x)的单调区间、极值;
(Ⅱ)是否存在实数a,使f(x)的最小值是3,若存在,求出a的值,若不存在,说明理由;
(Ⅲ)在(1)的条件下,求证:f(x)>g(x)+
1
2

查看答案和解析>>

同步练习册答案