精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=|lnx|,关于x的不等式f(x)-f(x0)≥c(x-x0)的解集为(0,+∞),其中x0∈(0,+∞),c为常数.当x0=1时,c的取值范围是[-1,1];当${x_0}=\frac{1}{2}$时,c的值是-2.

分析 当0<x<1时,f(x)=-lnx,f′(x)=-$\frac{1}{x}$∈(-∞,-1),当x>1时,f(x)=lnx,f′(x)=$\frac{1}{x}$∈(0,1),进而将x0=1和${x_0}=\frac{1}{2}$代入,结果斜率公式分类讨论可得答案.

解答 解:∵函数f(x)=|lnx|,
当0<x<1时,f(x)=-lnx,f′(x)=-$\frac{1}{x}$∈(-∞,-1),
当x>1时,f(x)=lnx,f′(x)=$\frac{1}{x}$∈(0,1),
①当x0=1时,f(x)-f(x0)≥c(x-x0)可化为:f(x)-f(1)≥c(x-1)
当0<x<1时,f(x)-f(1)≥c(x-1)可化为:$\frac{f(x)-f(1)}{x-1}$≤c,则c≥-1,
当x>1时,f(x)-f(1)≥c(x-1)可化为:$\frac{f(x)-f(1)}{x-1}$≥c,则c≤1,
故c∈[-1,1];
②当x0=$\frac{1}{2}$时,f(x)-f(x0)≥c(x-x0)可化为:f(x)-f($\frac{1}{2}$)≥c(x-$\frac{1}{2}$)
当0<x<$\frac{1}{2}$时,f(x)-f($\frac{1}{2}$)≥c(x-$\frac{1}{2}$)可化为:$\frac{f(x)-f(\frac{1}{2})}{x-\frac{1}{2}}$≤c,则c≥f′($\frac{1}{2}$)=-2,
当$\frac{1}{2}$<x<1时,f(x)-f($\frac{1}{2}$)≥c(x-$\frac{1}{2}$)可化为:$\frac{f(x)-f(\frac{1}{2})}{x-\frac{1}{2}}$≥c,则c≤f′($\frac{1}{2}$)=-2,
当x>1时,f(x)-f($\frac{1}{2}$)≥c(x-$\frac{1}{2}$)可化为:$\frac{f(x)-f(\frac{1}{2})}{x-\frac{1}{2}}$≥c,则c≤1,
故c=-2,
故答案为:[-1,1],-2

点评 本题考查的知识点是分段函数的应用,对数函数的图象与性质,导数的几何意义,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x2+ax+1(a∈R).
(1)若f(x)在[0,2]上的最小值为1,求实数a的取值范围;
(2)解关于x的不等式f(x)≥0;
(3)若关于x的方程f(f(x)-1)+f(x)=0无实数解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.三阶行列式$|\begin{array}{l}{1}&{-2}&{3}\\{2}&{0}&{-4}\\{-1}&{5}&{4}\end{array}|$中,元素4的代数余子式的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,已知AB⊥平面BCE,CD∥AB,△BCE是等边三角形,AB=BC=2CD,F为线段BE的中点.
(1)求证:CF∥平面ADE;
(2)求证:平面ADE⊥平面ABE;
(3)求二面角B-AE-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图所示,在直三棱柱ABC-DEF中,底面ABC的棱AB⊥BC,且AB=BC=2.点G、H在棱CF上,且GH=HG=GF=1
(1)证明:EH⊥平面ABG;
(2)求点C到平面ABG的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在正方体ABCD-A1B1C1D1中,E为线段B1C的中点,若三棱锥E-ADD1的外接球的体积为36π,则正方体的棱长为(  )
A.2B.2$\sqrt{2}$C.3$\sqrt{3}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=4x-$\frac{2}{1+c}$x2,g(x)=$\frac{4c}{1+c}$lnx.
(1)若直线l与函数f(x),g(x)的图象均相切,且与g(x)图象切点的横坐标为e(e是自然对数的底数),求c的值.
(2)若c<1,试讨论函数f(x)-g(x)的单调性.
(3)若c>1,记f(x)-g(x)的极大值为M(c),极小值为N(c),讨论函数h(c)=M(c)-N(c)-$\frac{a}{c+1}$(a为实数)的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,A,B,C,D四点在同一圆上,BC与AD的延长线交于点E,点F在BA的延长线上.
(1)若$\frac{EC}{CB}$=$\frac{1}{3}$,$\frac{ED}{DA}$=1,求$\frac{DC}{AB}$的值;
(2)若EF2=FA•FB,证明:EF∥CD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,正方体AC1的棱长为a,MN分别为BC1和AC上的点,且$\overrightarrow{AN}$=2$\overrightarrow{NC}$,$\overrightarrow{BM}$=2$\overrightarrow{M{C}_{1}}$,则MN的长为(  )
A.aB.$\sqrt{2}$aC.$\frac{\sqrt{5}}{3}$aD.$\frac{\sqrt{6}}{3}$a

查看答案和解析>>

同步练习册答案