精英家教网 > 高中数学 > 题目详情
2.在正方体ABCD-A1B1C1D1中,E为线段B1C的中点,若三棱锥E-ADD1的外接球的体积为36π,则正方体的棱长为(  )
A.2B.2$\sqrt{2}$C.3$\sqrt{3}$D.4

分析 如图所示,设三棱锥E-ADD1的外接球的半径为r由$\frac{4π}{3}×{r}^{3}$=36π,解得r.取AD1的中点F,连接EF.则三棱锥E-ADD1的外接球的球心一定在EF上,设为点O.设正方体的棱长为x,在Rt△OFD1中,利用勾股定理解出即可得出.

解答 解:如图所示,设三棱锥E-ADD1的外接球的半径为r,
∵三棱锥E-ADD1的外接球的体积为36π,则$\frac{4π}{3}×{r}^{3}$=36π,
解得r=3.
取AD1的中点F,连接EF.则三棱锥E-ADD1的外接球的球心一定在EF上,设为点O.
设正方体的棱长为x,在Rt△OFD1中,由勾股定理可得:$(\frac{\sqrt{2}}{2}x)^{2}$+(x-3)2=32,x>0.
化为:x=4.
∴正方体的棱长为4.
故选:D.

点评 本题考查了正方体的性质、三棱锥的性质、勾股定理、球的体积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=$\left\{\begin{array}{l}{2x-1(x>-1)}\\{{e}^{x}(x≤-1)}\end{array}\right.$,若a<b,f(a)=f(b),则实数a-2b的取值范围为(-∞,-$\frac{1}{e}$-2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若Sn=n2an(n≥2且n∈N*),a1=1,则an=$\frac{2}{n(n+1)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.当前《奔跑吧兄弟第三季》正在热播,某校一兴趣小组为研究收看《奔跑吧兄弟第三季》与年龄是否相关,在某市步行街随机抽取了110名成人进行调查,发现45岁及以上的被调查对象中有10人收看,有25人未收看;45岁以下的被调查对象中有50人收看,有25人未收看.
(1)试根据题设数据完成下列2×2 列联表,并说明是否有99.9%的把握认为收看《奔跑吧兄弟第三季》与年龄有关;
2×2 列联表
收看不收看总计
45岁以上
45岁以下
总计
(2)采取分层抽样的方法从45岁及以上的被调查对象中抽取了7人.从这7人中任意抽取2人,求至少有一人收看《奔跑吧兄弟第三季》的概率.
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据:
P(K2≥k00.0100.0050.001
K06.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=|lnx|,关于x的不等式f(x)-f(x0)≥c(x-x0)的解集为(0,+∞),其中x0∈(0,+∞),c为常数.当x0=1时,c的取值范围是[-1,1];当${x_0}=\frac{1}{2}$时,c的值是-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数f(x)=ex-1-ax有且仅有一个零点,则a的取值范围(-∞,0]∪{1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=4sin(θ-$\frac{π}{6}$)
(Ⅰ)求圆C的直角坐标方程;
(Ⅱ)O为极点,A,B为圆C上的两点,且∠AOB=$\frac{π}{3}$,求|OA|+|OB|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.极坐标系中,已知两点A(2,$\frac{π}{2}$),B(4,$\frac{π}{6}$),求这两点间的距离|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.三棱锥S-ABC的顶点S在平面ABC内的射影为P,给出下列条件,一定可以判断P为三角形ABC的垂心的有(  )个
①SA=SB=SC
②SA,SB,SC两两垂直 
③∠ABC=90°,SC⊥AB
④SC⊥AB,SA⊥BC.
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案