精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=$\left\{\begin{array}{l}{2x-1(x>-1)}\\{{e}^{x}(x≤-1)}\end{array}\right.$,若a<b,f(a)=f(b),则实数a-2b的取值范围为(-∞,-$\frac{1}{e}$-2].

分析 作出函数f(x)的图象,设f(a)=f(b)=t,根据否定,转化为关于t的函数,构造函数,求出函数的导数,利用导数研究函数的单调性和取值范围即可.

解答 解:作出函数f(x)的图象如图:
设f(a)=f(b)=t,
则0<t≤$\frac{1}{e}$,
∵a<b,∴a≤1,b>-1,
则f(a)=ea=t,f(b)=2b-1=t,
则a=lnt,b=$\frac{1}{2}$(t+1),
则a-2b=lnt-t-1,
设g(t)=lnt-t-1,0<t≤$\frac{1}{e}$,
函数的导数g′(t)=$\frac{1}{t}$-1=$\frac{1-t}{t}$,
则当0<t≤$\frac{1}{e}$时g′(t)>0,
此时函数g(t)为增函数,
∴g(t)≤g($\frac{1}{e}$)=ln$\frac{1}{e}$-$\frac{1}{e}$-1=-$\frac{1}{e}$-2,
即实数a-2b的取值范围为(-∞,-$\frac{1}{e}$-2],
故答案为:(-∞,-$\frac{1}{e}$-2].

点评 本题主要考查分段函数的应用,涉及函数与方程的关系,利用换元法转化为关于t的函数,构造函数,求函数的导数,利用导数研究函数的单调性和最值是解决本题的关键.综合性较强.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=|x-m|.
(Ⅰ)当m=1时,解不等式f(x)+f(2x)>1;
(Ⅱ)证明:当x≥1时,f(x)+f(-$\frac{1}{2x}}$)≥$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.定义在区间[-π,2π]上的函数y=sin2x的图象与y=cosx的图象交点的横坐标之和等于$\frac{5π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在极坐标系中,已知O为极点,点A(2,$\frac{π}{3}$)关于极轴的对称点为B.
(1)求点B的极坐标和直线AB的极坐标方程;
(2)求△AOB外接圆的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x2+ax+1(a∈R).
(1)若f(x)在[0,2]上的最小值为1,求实数a的取值范围;
(2)解关于x的不等式f(x)≥0;
(3)若关于x的方程f(f(x)-1)+f(x)=0无实数解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图的三角形数阵中,满足:
(1)第1行的数为1;
(2)第n(n≥2)行首尾两数均为n,其余的数都等于它肩上的两个数相加.
则第10行中第2个数是46.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.不等式|2x-1|(x+1)>0的解集为{x|x>-1且x≠$\frac{1}{2}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x2-1)=logm$\frac{{x}^{2}}{2-{x}^{2}}$(0<m<1).
(1)求函数f(x)的解析式及定义域;
(2)判断f(x)在定义域上的单调性,并用定义域加以证明;
(3)若g(x)=f(2x)在(-∞,-1]最小值为-2,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在正方体ABCD-A1B1C1D1中,E为线段B1C的中点,若三棱锥E-ADD1的外接球的体积为36π,则正方体的棱长为(  )
A.2B.2$\sqrt{2}$C.3$\sqrt{3}$D.4

查看答案和解析>>

同步练习册答案