精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和为Sn,a1=1,且3an+1+2Sn=3(n为正整数)
(Ⅰ)求出数列{an}的通项公式;
(Ⅱ)若对任意正整数n,k≤Sn恒成立,求实数k的最大值.
(Ⅰ)∵3an+1+2Sn,①
∴当n≥2时,3an+2Sn-1=3.②
由 ①-②,得3an+1-3an+2an=0.
an+1
an
=
1
3
,n≥2.
又∵a1=1,3a2+2a1=3,解得 a2=
1
3

∴数列{an}是首项为1,公比为q=
1
3
的等比数列.
an=a1qn-1=(
1
3
)
n-1
,(n为正整数).…(7分)
(Ⅱ)∵数列{an}是首项为1,公比为q=
1
3
的等比数列,
Sn=
1×(1-
1
3 n
)
1-
1
3
=
3
2
(1-
1
3 n
)

由题意可知,对于任意的正整数n,恒有k≤
3
2
(1-
1
3 n
)

∵数列{1-
1
3 n
}单调递增,当n=1时,数列中的最小项为
2
3
,即
3
2
(1-
1
3 n
)≥1

∴必有k≤1,即实数k的最大值为1.…(14分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

19、已知数列{an}的前n项和Sn=n2(n∈N*),数列{bn}为等比数列,且满足b1=a1,2b3=b4
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于(  )
A、16B、8C、4D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n+1,那么它的通项公式为an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

13、已知数列{an}的前n项和为Sn=3n+a,若{an}为等比数列,则实数a的值为
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通项公式an
(2)求Sn

查看答案和解析>>

同步练习册答案