精英家教网 > 高中数学 > 题目详情
13.已知集合M={x|y=lg(1-x)},集合N={y|y=2x,x∈R},则M∩N=(  )
A.{x|x<1}B.{x|x>1}C.{x|0<x<1}D.

分析 求出M中x的范围确定出M,求出N中y的范围确定出N,找出M与N的交集即可.

解答 解:由M中y=lg(1-x),得到1-x>0,即x<1,
∴M={x|x<1},
由N中y=2x>0,得到N={y|y>0},
则M∩N={x|0<x<1},
故选:C.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ex(asinx+bcosx)在(0,1)处的切线与直线y=2x+e平行.
(1)求a,b的值及函数f(x)的单调区间;
(2)当0<x<1时,求证:f(x)>(1+x-x2)ln(x+2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.将棱长为1的正方体截去若干个角后,得到某几何体的三视图,如图所示,它们都是边长为1的正方形,则该几何体的体积为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=ex,x∈R.
(Ⅰ) 证明:曲线y=f(x)与曲线y=x+1有唯一公共点;
(Ⅱ)(i)求g(x)=x+2+(x-2)•f(x)在[0,+∞)的最小值;
(ii)若实数a,b不相等,试比较$\frac{f(a)+f(b)}{2}$与$\frac{f(b)-f(a)}{b-a}$的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.i是虚数单位,复数$\frac{2-2i}{1+i}$=(  )
A.2B.-2C.2iD.-2i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的图象如图所示,为得到g(x)=cosωx的图象,则只要将f(x)的图象(  )
A.向右平移$\frac{π}{6}$个单位长度B.向左平移$\frac{π}{12}$个单位长度
C.向左平移$\frac{π}{6}$个单位长度D.向右平移$\frac{π}{12}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若定义域为D的函数f(x)满足:
①f(x)在D内是单调函数;
②存在[a,b]⊆D,使得f(x)在[a,b]上的值域为[$\frac{a}{2}$,$\frac{b}{2}$],则称函数f(x)为“半值函数”.
已知函h(x)=logc(cx+t)(c>0,c≠1)是“半值函数”则实数t的取值范围为(  )
A.(0,+∞)B.(-∞,$\frac{1}{4}$)C.($\frac{1}{4}$,+∞)D.(0,$\frac{1}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,角A,B,C的对边分别为a,b,c,向量$\overrightarrow m}$=(4b,$\sqrt{7}$),$\overrightarrow n}$=(a,sinA)满足$\overrightarrow m}$∥$\overrightarrow n}$.
(Ⅰ)求sinB的值;
(Ⅱ)若a,b,c成等差数列,且公差大于0,求cosA-cosC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若如图为某直三棱柱(侧棱与底面垂直)被削去一部分后的直观图与三视图中的侧视图、俯视图,则其正视图的面积为4,三棱锥D-BCE的体积为$\frac{8}{3}$.

查看答案和解析>>

同步练习册答案