【题目】已知椭圆![]()
经过点
,
,过点
的直线
与椭圆
交于不同的两点![]()
.
(1)求椭圆
的方程;
(2)求
的取值范围;
(3)设直线
和直线
的斜率分别为
和
,求证:
为定值.
科目:高中数学 来源: 题型:
【题目】如图所示,太极图是由黑白两个鱼形纹组成的图案,俗称阴阳鱼.太极图展现了一种相互转化,相对统一的和谐美.定义:能够将圆
的周长和面积同时等分成两个部分的函数称为圆
的一个“太极函数”.现有下列说法:①对于圆
:
的所有非常数函数的太极函数中,一定不能为偶函数;②函数
是圆
:
的一个太极函数;③存在圆
,使得
是圆
的一个太极函数;④直线
所对应的函数一定是圆
:
(
)的太极函数;⑤若函数
(
)是圆
:
的太极函数,则
.其中正确的是__________.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
在椭圆
上,过点
作
轴于点![]()
(1)求线段
的中点的轨迹
的方程
(2)设
、
两点在(1)中轨迹
上,点
,两直线
与
的斜率之积为
,且(1)中轨迹
上存在点
满足
,当
面积最小时,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于数列
,定义“
变换”:
将数列
变换成数列
,其中
,且
,这种“
变换”记作
.继续对数列
进行“
变换”,得到数列
,依此类推,当得到的数列各项均为
时变换结束.
(1)试问
和
经过不断的“
变换”能否结束?若能,请依次写出经过“
变换”得到的各数列;若不能,说明理由;
(2)求
经过有限次“
变换”后能够结束的充要条件;
(3)证明:
一定能经过有限次“
变换”后结束.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,矩形ABCD中,
,
,点F、E分别是BC、CD的中点,现沿AE将
折起,使点D至点M的位置,且
.
![]()
![]()
(1)证明:
平面MEF;
(2)求二面角
的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某房地产公司新建小区有A、B两种户型住宅,其中A户型住宅每套面积为100平方米,B户型住宅每套面积为80平方米,该公司准备从两种户型住宅中各拿出12套销售给内部员工,表是这24套住宅每平方米的销售价格:(单位:万元平方米):
房号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
A户型 | 2.6 | 2.7 | 2.8 | 2.8 | 2.9 | 3.2 | 2.9 | 3.1 | 3.4 | 3.3 | 3.4 | 3.5 |
B户型 | 3.6 | 3.7 | 3.7 | 3.9 | 3.8 | 3.9 | 4.2 | 4.1 | 4.1 | 4.2 | 4.3 | 4.5 |
(1)根据表格数据,完成下列茎叶图,并分别求出A,B两类户型住宅每平方米销售价格的中位数;
A户型 | B户型 | |
2. | ||
3. | ||
4. |
(2)该公司决定对上述24套住房通过抽签方式销售,购房者根据自己的需求只能在其中一种户型中通过抽签方式随机获取房号,每位购房者只有一次抽签机会,小明是第一位抽签的员工,经测算其购买能力最多为320万元,抽签后所抽得住房价格在其购买能力范围内则确定购买,否则,将放弃此次购房资格,为了使其购房成功的概率更大,他应该选择哪一种户型抽签?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知F1,F2为椭圆E:
的左、右焦点,且|F1F2|=2
,点
在E上.
(1)求E的方程;
(2)直线l与以E的短轴为直径的圆相切,l与E交于A,B两点,O为坐标原点,试判断O与以AB为直径的圆的位置关系,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com