【题目】已知
,函数
.
(1)当
时,解不等式
;
(2)若关于
的方程
的解集中恰好有一个元素,求
的取值范围;
(3)设
,若对任意
,函数
在区间
上的最大值与最小值的差不超过1,求
的取值范围.
【答案】
(1)解:由
,得
,
解得
.
(2)解:
,
,
当
时,
,经检验,满足题意.
当
时,
,经检验,满足题意.
当
且
时,
,
,
.
是原方程的解当且仅当
,即
;
是原方程的解当且仅当
,即
.
于是满足题意的
.
综上,
的取值范围为
.
(3)解:当
时,
,
,
所以
在
上单调递减.
函数
在区间
上的最大值与最小值分别为
,
.
即
,对任意
成立.
因为
,所以函数
在区间
上单调递增,
时, ![]()
有最小值
,由
,得
.
故
的取值范围为
.
【解析】(1)当a=5时,解导数不等式即可.
(2)根据对数的运算法则进行化简,转化为一元二次方程,讨论a的取值范围进行求解即可.
(3)根据条件得到f(t)-f(t+1)≤1,恒成立,利用换元法进行转化,结合对勾函数的单调性进行求解即可.
【考点精析】根据题目的已知条件,利用函数单调性的性质和复合函数单调性的判断方法的相关知识可以得到问题的答案,需要掌握函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集;复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”.
科目:高中数学 来源: 题型:
【题目】我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x(吨),一位居民的月用水量不超过x的部分按平价收费,超出x的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5)分成9组,制成了如图所示的频率分布直方图. ![]()
(Ⅰ)求直方图中a的值;
(Ⅱ)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;
(Ⅲ)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),估计x的值,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在梯形ABCD中,∠ADC=
,AB∥CD,PC⊥平面ABCD,CP=AB=2DC=2DA,点E在BP上,且EB=2PE. ![]()
(1)求证:DP∥平面ACE;
(2)求二面角E﹣AC﹣P的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=ax3﹣x2﹣x+b(a,b∈R,a≠0),g(x)=
(e是自然对数的底数),f(x)的图象在x=﹣
处的切线方程为y=
.
(1)求a,b的值;
(2)探究直线y=
.是否可以与函数g(x)的图象相切?若可以,写出切点的坐标,否则,说明理由;
(3)证明:当x∈(﹣∞,2]时,f(x)≤g(x).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班级50名学生的考试分数x分布在区间[50,100)内,设分数x的分布频率是f(x)且f(x)=
,考试成绩采用“5分制”,规定:考试分数在[50,60)内的成绩记为1分,考试分数在[60,70)内的成绩记为2分,考试分数在[70,80)内的成绩记为3分,考试分数在[80,90)内的成绩记为4分,考试分数在[90,100)内的成绩记为5分.用分层抽样的方法,现在从成绩在1分,2分及3分的人中用分层抽样随机抽出6人,再从这6人中抽出3人,记这3人的成绩之和为ξ(将频率视为概率).
(1)求b的值,并估计班级的考试平均分数;
(2)求P(ξ=7);
(3)求ξ的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,经过村庄A有两条夹角为60°的公路AB,AC,根据规划拟在两条公路之间的区域内建一工厂P,分别在两条公路边上建两个仓库M、N (异于村庄A),要求PM=PN=MN=2(单位:千米).如何设计, 可以使得工厂产生的噪声对居民的影响最小(即工厂与村庄的距离最远).
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=
sin(x+
)﹣
cos(x+
),若存在x1 , x2 , x3 , …,xn满足0≤x1<x2<x3<…<xn≤6π,且|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…
,则n的最小值为( )
A.6
B.10
C.8
D.12
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】70年代中期,美国各所名牌大学校园内,人们都像发疯一般,夜以继日,废寝忘食地玩一个数学游戏.这个游戏十分简单:任意写出一个自然数N,并且按照以下的规律进行变换:如果是个奇数,则下一步变成3N+1;如果是个偶数,则下一步变成
.不单单是学生,甚至连教师、研究员、教授与学究都纷纷加入.为什么这个游戏的魅力经久不衰?因为人们发现,无论N是怎样一个数字,最终都无法逃脱回到谷底1.准确地说,是无法逃出落入底部的4﹣2﹣1循环,永远也逃不出这样的宿命.这就是著名的“冰雹猜想”.按照这种运算,自然数27经过十步运算得到的数为( )
A.142
B.71
C.214
D.107
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com