精英家教网 > 高中数学 > 题目详情
已知函数f(x)=3x,且x=a+2时,f(x)=18,g(x)=3ax-4x的定义域为[0,1],
(1)求g(x)的解析式;
(2)求g(x)的单调区间;
(3)求g(x)的值域。
解:(1)因为f(x)=3x,且x=a+2时f(x)=18,
所以f(a+2)=3a+2=18,所以3a=2,
所以
所以g(x)=2x-4x
(2)因为函数g(x)的定义域为[0,1],
令t=2x
因为x∈[0,1]时,函数t=2x在区间[0,1]上单调递增,
所以t∈[1,2],
则g(t)=t-t2=-(t2-t),t∈[1,2],
因为函数t=2x在区间[0,1]上单调递增,函数g(t)=t-t2在t∈[1,2]上单调递减,
所以函数g(x)在区间[0,1]上单调递减;
(3)因为函数g(x)在区间[0,1]上单调递减,
所以x∈[0,1]时,有g(1)≤g(x)<g(0),
因为g(1)=21-41=-2,g(0)=20-40=0,
所以-2≤g(x)≤0,
故函数g(x)的值域为[-2,0]。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
(3-a)x-3 (x≤7)
ax-6??? (x>7)
,数列an满足an=f(n)(n∈N*),且an是递增数列,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-ax
,若f(x)在区间(0,1]上是减函数,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3-2sin2ωx-2cos(ωx+
π
2
)cosωx(0<ω≤2)
的图象过点(
π
16
,2+
2
)

(Ⅰ)求ω的值及使f(x)取得最小值的x的集合;
(Ⅱ)该函数的图象可由函数y=
2
sin4x(x∈R)
的图象经过怎样的变换得出?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|3-
1x
|,x∈(0,+∞)

(1)写出f(x)的单调区间;
(2)是否存在实数a,b(0<a<b)使函数y=f(x)定义域值域均为[a,b],若存在,求出a,b的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x-
π
3
)=sinx,则f(π)
等于(  )

查看答案和解析>>

同步练习册答案