精英家教网 > 高中数学 > 题目详情
13.在△ABC中,3sinA=4sinB=6sinC,则cosB=$\frac{11}{16}$.

分析 由正弦定理可得3sinA=4sinB=6sinC,进而可用a表示b,c,代入余弦定理化简可得.

解答 解:∵3sinA=4sinB=6sinC,
∴由正弦定理可得3a=4b=6c
∴b=$\frac{3a}{4}$,c=$\frac{1}{2}$a,
由余弦定理可得cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{{a}^{2}+\frac{{a}^{2}}{4}-\frac{9{a}^{2}}{16}}{2×a×\frac{1}{2}a}$=$\frac{11}{16}$.
故答案为:$\frac{11}{16}$.

点评 本题考查正余弦定理的应用,用a表示b,c是解决问题的关键,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.设直线nx+(n+1)y=$\sqrt{2}(n∈{N^*})$与两坐标轴围成的三角形面积为Sn,则S1+S2+S3+…S2013的值为(  )
A.$\frac{2014}{2015}$B.$\frac{2011}{2012}$C.$\frac{2012}{2013}$D.$\frac{2013}{2014}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设p:“lgx,lg(x+1),lg(x+3)成等差数列”,q:“2x+1-$\frac{8}{3},{2^x}$,3成等比数列”,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设$\overrightarrow{a}$、$\overrightarrow{b}$是两个单位向量,其夹角为θ,则“$\frac{π}{6}<θ<\frac{π}{3}$”是“|$\overrightarrow{a}$-$\overrightarrow{b}$|<1”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知集合A={a-3,3a-5,3},B={a2+2,2a-2},若A∩B={3},求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,已知抛物线C:x2=2py(p>0),其焦点F到准线的距离为2,点A、点B是抛物线C上的定点,它们到焦点F的距离均为2,且点A位于第一象限.
(1)求抛物线C的方程及点A、点B的坐标;
(2)若点Q(x0,y0)是抛物线C异于A、B的一动点,分别以点A、B、Q为切点作抛物线C的三条切线l1、l2、l3,若l1与l2、l1与l3、l2与l3分别相交于D、E、H,设△ABQ,△DEH的面积依次为S△ABQ,S△DEH,记λ=$\frac{{S}_{△ABQ}}{{S}_{△EDH}}$,问:λ是否为定值?若是,请求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知变量x,y满足约束条件$\left\{\begin{array}{l}{x+y-4≥0}\\{x-y+2≥0}\\{2x-y-5≤0}\end{array}\right.$,则z=$\frac{x+y+2}{x+3}$的取值范围是[0,$\frac{4}{5}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知向量$\overrightarrow a$=(2,1),$\overrightarrow b$=(0,1),$\overrightarrow c$=(2,3),若λ∈R且($\overrightarrow a$+λ$\overrightarrow b$)∥$\overrightarrow c$,则λ=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数y=f(x)的反函数f-1(x)=log${\;}_{\frac{1}{2}}$x,则方程 f(x)=1的解集是(  )
A.{1}B.{2}C.{3}D.{0}

查看答案和解析>>

同步练习册答案