精英家教网 > 高中数学 > 题目详情
18.如图,已知抛物线C:x2=2py(p>0),其焦点F到准线的距离为2,点A、点B是抛物线C上的定点,它们到焦点F的距离均为2,且点A位于第一象限.
(1)求抛物线C的方程及点A、点B的坐标;
(2)若点Q(x0,y0)是抛物线C异于A、B的一动点,分别以点A、B、Q为切点作抛物线C的三条切线l1、l2、l3,若l1与l2、l1与l3、l2与l3分别相交于D、E、H,设△ABQ,△DEH的面积依次为S△ABQ,S△DEH,记λ=$\frac{{S}_{△ABQ}}{{S}_{△EDH}}$,问:λ是否为定值?若是,请求出该定值;若不是,请说明理由.

分析 (1)根据抛物线C:x2=2py(p>0),其焦点F到准线的距离为2,求出p,可得抛物线C的方程,根据,点A、点B是抛物线C上的定点,它们到焦点F的距离均为2,且点A位于第一象限,求出点A、点B的坐标;
(2)求出D,E,H的坐标,进而求出S△ABQ,S△DEH,即可得出结论.

解答 解:(1)∵抛物线C:x2=2py(p>0),其焦点F到准线的距离为2,
∴p=2,
∴抛物线C的方程为x2=4y;
∵点A、点B是抛物线C上的定点,它们到焦点F的距离均为2,
∴A(2,1);B(-2,1);
(2)y=$\frac{1}{4}$x2,∴y′=$\frac{1}{2}$x
∴l1:y=x-1;l2:y=-x-1;l3:y=$\frac{1}{2}$x0x-$\frac{1}{4}$x02
∴D(0,-1),E($\frac{{x}_{0}+2}{2}$,$\frac{{x}_{0}}{2}$),H($\frac{{x}_{0}-2}{2}$,-$\frac{{x}_{0}}{2}$),
∴EH=$\sqrt{4+{{x}_{0}}^{2}}$;
${d}_{D-{l}_{3}}$=$\frac{|1-\frac{1}{4}{{x}_{0}}^{2}|}{\sqrt{1+\frac{1}{4}{{x}_{0}}^{2}}}$
∴S△ABQ=$\frac{1}{2}AB•{d}_{Q-AB}$=$\frac{|4-{{x}_{0}}^{2}|}{2}$,S△DEH=$\frac{1}{2}EH•$${d}_{D-{l}_{3}}$=$\frac{|4-{{x}_{0}}^{2}|}{4}$
∴λ=$\frac{{S}_{△ABQ}}{{S}_{△EDH}}$=2.

点评 本题考查抛物线的方程,考查直线与抛物线的位置关系,考查三角形面积的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知集合P={x|x2+x-6=0},S={x|ax+1=0},且S⊆P
求:由a的可取值组合的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设集合A={-2,-1,0,1,2},B={x|y=log(x-3)•(1-x)},则A∩B等于(  )
A.{2}B.{1,2}C.{0,-1,1}D.{-1,1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.不等式2${\;}^{{x}^{2}}$<4的解集为(-$\sqrt{2}$,$\sqrt{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在△ABC中,3sinA=4sinB=6sinC,则cosB=$\frac{11}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=-a2x-2ax+1(a>0,a≠1).
(1)求函数f(x)的值域;
(2)当x∈[-2,1]时.,函数f(x)的值为-7.求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.数列数列-3,5,-7,9,-11,…的一个通项公式为an=(-1)n(2n+1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.下列四个命题:
①函数f(x)=cosxsinx的最大值为1;
②命题“?x∈R,x-2≤lgx”的否定是“?x∈R,x-2>lgx”;
③若△ABC为锐角三角形,则有sinA+sinB+sinC>cosA+cosB+cosC;
④“a≤0”是“函数f(x)=|x2-ax|在区间(0,+oo)内单调递增”的充分必要条件.
其中所有正确命题的序号为②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}的通项an=n2-n,求前n项和Sn

查看答案和解析>>

同步练习册答案