| A. | $\frac{2014}{2015}$ | B. | $\frac{2011}{2012}$ | C. | $\frac{2012}{2013}$ | D. | $\frac{2013}{2014}$ |
分析 直线nx+(n+1)y=$\sqrt{2}(n∈{N^*})$,可得与坐标轴的交点分别为:$(\frac{\sqrt{2}}{n},0)$,$(0,\frac{\sqrt{2}}{n+1})$,于是直线与两坐标轴围成的三角形面积为Sn=$\frac{1}{n}-\frac{1}{n+1}$.利用“裂项求和”即可得出.
解答 解:∵直线nx+(n+1)y=$\sqrt{2}(n∈{N^*})$,
∴与坐标轴的交点分别为:$(\frac{\sqrt{2}}{n},0)$,$(0,\frac{\sqrt{2}}{n+1})$,
∴直线与两坐标轴围成的三角形面积为Sn=$\frac{1}{2}×\frac{\sqrt{2}}{n}×\frac{\sqrt{2}}{n+1}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$.
则S1+S2+S3+…S2013的值=$(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{2013}-\frac{1}{2014})$
=1-$\frac{1}{2014}$
=$\frac{2013}{2014}$.
故选:D.
点评 本题考查了直线的截距式、三角形的面积计算公式、“裂项求和”,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{\sqrt{5}}{5}$ | B. | -$\frac{8\sqrt{5}}{5}$ | C. | $\frac{8\sqrt{5}}{5}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [$\frac{5}{7}$,5] | B. | [$\frac{5}{7}$,1] | C. | [$\frac{1}{5}$,$\frac{7}{5}$] | D. | (-∞,$\frac{1}{5}$]∪[$\frac{7}{5}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com