精英家教网 > 高中数学 > 题目详情
12.执行如图所示的程序框图,若输出的a的值为15,则判断框应填写(  )
A.2B.3C.4D.5

分析 根据框图流程依次计算程序运行的结果,根据输出的a的值,确定跳出循环的i值,从而得判断框的条件.

解答 解:由程序框图知:第一次循环i=1,a=1;
第二次循环i=2,a=3;
第三次循环i=3,a=7;
第四次循环i=4,a=15;
∵输出的a的值为15,
∴n=4时跳出循环体,
∴判断框内的条件为:n<4.
故选:C.

点评 本题考查了循环结构的程序框图,根据框图流程依次计算程序运行的结果是解答此类问题的常用方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=(a-1)lnx-$\frac{1}{2}$x2,若?x1,x2∈(0,+∞),且x1≠x2,恒有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0成立,则实数a的取值范围是(  )
A.[1,+∞)B.(-∞,-1]C.(-∞,1]D.[-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知定圆A:(x+$\sqrt{3}$)2+y2=16动圆M过点B($\sqrt{3}$,0),且和定圆A相切,动圆的圆心M的轨迹记为C,则曲线C的方程为$\frac{{x}^{2}}{4}+{y}^{2}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.过抛物线C:y2=4x的焦点F作直线l交抛物线C于A,B,若|AF|=3|BF|,则l的斜率是(  )
A.$\sqrt{3}$B.-$\sqrt{2}$C.±$\sqrt{3}$D.±$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某厂每月生产一种投影仪的固定成本为0.5万元,但每生产100台,需要加可变成本(即另增加投入)0.25万元,市场对此产品的年需求量为500台,销售的收入函数为R(x)=5x-$\frac{x^2}{2}$(万元)(0≤x≤5),其中x是产品售出的数量(单位:百台).
(1)求月销售利润y(万元)关于月产量x(百台)的函数解析式;
(2)当月产量为多少时,销售利润可达到最大?最大利润为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=$\sqrt{x-2}+\sqrt{11-x}$的最大值为M.
(Ⅰ)求实数M的值;
(Ⅱ)求关于x的不等式|x-$\sqrt{2}$|+|x+2$\sqrt{2}$|≤M的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数g(x)=2cos(x-$\frac{π}{4}$)cos(x+$\frac{π}{4}$)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变)后得到h(x)的图象,设f(x)=$\frac{1}{4}$x2+h(x),则f′(x)的图象大致为(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=1-$\frac{1}{x+1}$,则f(2)+f(3)+…f(10)+f($\frac{1}{2}$)+f($\frac{1}{3}$)+…f($\frac{1}{10}$)=9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知a,b,c是正实数,则“b≤$\sqrt{ac}$”是“a+c≥2b”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案